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Introduction

The study material is designed for students of VSB - Technical University of Ostrava.

The worksheets consist of several theoretical sheets, some solved problems and some sheets with unsolved problems for practicing. The materials
should support classwork and they are not recommended for self-study or as a replacement for textbooks.
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5 – System of linear equations Řy

Three friends went to a sushi bar and each one bought himself a dish.
The first one paid 24 coins for 1 hosomaki, 5 futomaki and 2 uramaki.
The second one paid 23 coins for 3 hosomaki, 4 futomaki and 2 ura-
maki and the third one paid 14 coins for 4 hosomaki, 2 futomaki and 1
uramaki.
What is the price of each type of sushi roll?

The problem can be formulated as three equations in three unknowns:

h + 5 f + 2u = 24
3h + 4 f + 2u = 23
4h + 2 f + u = 14

where h, f and u represent the price of one hosomaki, futomaki and ura-
maki roll.

The values of h, f and u which satisfy the equations are the solution. The
equations form a so called system of linear equations.

Definition

A system of linear equations (or linear system) is a set of linear equa-
tions in the form

a11x1+ a12x2+· · · + a1nxn = b1

a21x1+ a22x2+· · · + a2nxn = b2
...

am1x1+am2x2+· · · + amnxn = bm,

The aij are called the coefficients of the system and bi are called the
right-hand side of the system.
A solution of a linear system is any tuple of numbers that makes each
equation a true statement. The set of all solutions of a system is called a
general solution of the system.
Two systems with equal solution sets are called equivalent.
A system with no solution is called inconsistent.

Below is an example of a system of three linear equations in four variables
x1, x2, x3 and x4.

3x1 − x2 + 2x3 + x4 = 4
−x1 + x2 − x3 + 5x4 = −2

x1 + 0.25x4 = 0

In this case m = 3, n = 4 and for example b1 = 4, a12 = −1, a33 = 0.
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6 – System of linear equations, Gaussian elimination Řy

Some systems are easy to solve:
Exercise

Solve the following system.

x + y + z = 10
3y + z = 14

2z = 10

Example

Solve the following system.

x + 3y + 2z = 8
3y + 3z = 15

2z = 8

x + 3y + 2z = 8 x + 3 · 1 + 2 · 4 = 8 −→ x= −3
3y + 3z = 15 3y + 3 · 4 = 15 −→ y = 1

2z = 8 −→ z = 4

The last equation is solved for the value of the last variable. This value
is then substituted into the previous equation to get the value of another
variable and so on. This process is called back substitution.

Some operations with equations do not change the solution of the system.
The simplest of these are called elementary operations. If such operations
are performed on the rows of the augmented matrix of the system, they
are called elementary row operations.

Definition

There are three types of elementary row operations:
• swapping two rows,
• multiplying a row by a nonzero number,
• adding a multiple of one row to another row.
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7 – System of linear equations, Gaussian elimination Řy

One way to find the solution of some system is to transform it into another
simpler but equivalent system using elementary row operations. This
method is called Gaussian elimination. It will be shown on the follow-
ing 3 by 3 system.

Example

Solve the following system using Gaussian elimination.

x + 3y + z = 2
2x + 8y + z = 4
3x + y + 4z = 0

The elementary row operatins are used to get zeros on the positions
marked red.

x + 3y + z = 2 (R1)

2x + 8y + z = 4 (R2)

3x + y + 4z = 0 (R3)

To eliminate 2x in the second equation, the first equation is multiplied
by 2 and subtracted from the second equation. The result is the following
equivalent system:

x + 3y + z = 2
2y − z = 0 (R2 − 2R1)

3x + y + 4z = 0

To eliminate 3x in the third equation, the first equation is multiplied by 3
and subtracted from the third equation.

x + 3y + z = 2
2y − z = 0

− 8y + z =−6 (R3 − 3R1)

To eliminate −8y, the second equation is multiplied by −4 and subtracted
from the third one.

x + 3y + z = 2
2y − z = 0
− 3z =−6 (R3 + 4R2)

Back substitution is used to solve the system.

x + 3y + z = 2 x + 3 · 1 + 1 · 2 = 2 −→ x = −3
2y − z = 0 2y− 1 · 2 = 0 −→ y = 1
−3z =−6 −→ z = 2

The solution is:
x = −3
y = 1
z = 2

Verify that the solution is correct:

R1: (−3) + 3 · 1 + 2 = 2 3

R2: 2 · (−3) + 8 · 1 + 2 = 4 3

R3: 3 · (−3) + 1 + 4 · 2 = 0 3
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Gaussian elimination using matrices
There is no reason to write down the symbols for the variables (x, y, z, x1 etc.) throughout the whole process
of elimination since we only work with the numbers (coeficients and right-hand side) and only the numbers
matter. The same process can be written more clearly by omitting the symbols.

x + 3y + z = 2

So instead of 2x + 8y + z = 4

3x + y + 4z = 0

we write

 1 3 1 2
2 8 1 4
3 1 4 0

 .

An array of numbers such as this one is called a matrix. (See page 30 for a formal definition.) This particular
matrix has three rows and four columns.

Definition

The matrix A containing the coefficients of a system is called its coefficient matrix. The matrix A|b which
contains in addition the right-hand side is called the augmented matrix of the system.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 . . . amn

 A|b =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

... . . . ...
...

am1 am2 . . . amn bm



In our example,

A =

 1 3 1
2 8 1
3 1 4

 A|b =

 1 3 1 2
2 8 1 4
3 1 4 0


The augmented matrix is ussually written with a line separating the right-hand side to emphasize it.
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Example

Solve the following system using Gaussian elimination.

x + 3y + z = 2
2x + 8y + z = 4
3x + y + 4z = 0

 1 3 1 2
2 8 1 4
3 1 4 0

R2− 2R1 −→

 1 3 1 2
0 2 −1 0
3 1 4 0


R3− 3R1

−→

−→

 1 3 1 2
0 2 −1 0
0 −8 1 −6


R3+4R2

−→

 1 3 1 2
0 2 −1 0
0 0 −3 −6



Back substitution is used to find the solution.

x + 3y + z = 2 x + 3 · 1 + 1 · 2 = 2 −→ x = −3
2y − z = 0 2y− 1 · 2 = 0 −→ y = 1
−3z =−6 −→ z = 2

The system has one solution: x
y
z

 =

−3
1
2


Verify that the solution is correct:

R1: (−3) + 3 · 1 + 2 = 2 3

R2: 2 · (−3) + 8 · 1 + 2 = 4 3

R3: 3 · (−3) + 1 + 4 · 2 = 0 3

To eliminate each column one of its nonzero coefficient is selected and
used to eliminate coefficients below. Such a coefficient is called a pivot.

From now on pivots will be circled during elimination process as shown
below.  1 3 1 2

2 8 1 4
3 1 4 0

R2− 2R1 −→

 1 3 1 2
0 2 −1 0
3 1 4 0


R3− 3R1

−→

−→

 1 3 1 2

0 2 −1 0
0 −8 1 −6


R3+4R2

−→

 1 3 1 2
0 2 −1 0
0 0 -3 −6


The matrix resulting from elimination resembles a staircase and from now
this also will be emphasized.
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Exercise

Solve the following system using Gaussian elimination.

x + 3y + z = 7
−x − y + 2z = 2
3x + y − 4z = 0
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11 – System of linear equations, Gaussian elimination Řy

Example

Solve the following system using Gaussian elimination.

13x1 +13x2 +13x3 −13x4 = 26
−x1 − x2 − 2x3 + 2x4 = 2
2x1 + 5x2 − 3x3 − x4 = −1
5x1 + 7x2 − 3x3 − 2x4 = 2


13 13 13 −13 26
−1 −1 −2 2 2

2 5 −3 −1 −1
5 7 −3 −2 2


R1/13

−→


1 1 1 −1 2
−1 −1 −2 2 2

2 5 −3 −1 −1
5 7 −3 −2 2

R2+R1

R3−2R1

R4−5R1

−→

−→


1 1 1 −1 2
0 0 −1 1 4
0 3 −5 1 −5
0 2 −8 3 −8

R2↔R3 −→

A pivot cannot be zero so we will swap rows to get a nonzero pivot.

−→


1 1 1 −1 2
0 3 −5 1 −5
0 0 −1 1 4
0 2 −8 3 −8


3 R4

−→


1 1 1 −1 2

0 3 −5 1 −5
0 0 −1 1 4
0 6 −24 9 −24


R4−2R2

−→

−→


1 1 1 −1 2
0 3 −5 1 −5
0 0 -1 1 4
0 0 −14 7 −14


R4−14R3

−→


1 1 1 −1 2
0 3 −5 1 −5
0 0 -1 1 4
0 0 0 -7 −70



Back substitution:

x1 + x2 + x3− x4 = 2 x1 + 1 · 5 + 1 · 6− 1 · 10 = 2 −→ x1 = 1
3x2− 5x3 + x4 =−5 3x2 − 5 · 6 + 1 · 10 =−5 −→ x2 = 5
− x3 + x4 = 4 −x3 + 1 · 10 = 4 −→ x3 = 6

−7x4 =−70 −→ x4 = 10

The solution is: 
x1
x2
x3
x4

 =


1
5
6

10


Verify that the solution is correct:

R1: 13 · 1 + 13 · 5 + 13 · 6− 13 · 10 = 13 + 65 + 78− 130 = 26 3

R2: − 1 · 1− 5− 2 · 6 + 2 · 10 = −1− 5− 12 + 20 = 2 3

R3: 2 · 1 + 5 · 5− 3 · 6− 10 = 2 + 25− 18− 10 = −1 3

R4: 5 · 1 + 7 · 5− 3 · 6− 2 · 10 = 5 + 35− 18− 20 = 2 3
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12 – System of linear equations, Gaussian elimination Řy

Exercise

Solve the following system using Gaussian elimination.

− 2y − 2z + 8w = 2
x − 3y − z + 3w = 0
x − y + z + 5w = 18

2x − 8y + 12w = 22
−x + y − z + 5w = 2
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13 – System of linear equations, Gaussian elimination Řy

Example

Solve the following system using Gaussian elimination.

x + 4y + z = 2
2x + 8y + z = 4
3x + 12y + 4z = 0

 1 4 1 2
2 8 1 4
3 12 4 0

R2−2R1

R3−3R1

−→

 1© 4 1 2
0 0 −1 0
0 0 1 −6

 −→
In this case there is no pivot in second column. We choose a pivot from the
third column and continue eliminating.

−→

 1© 4 1 2
0 0 -1© 0
0 0 1 −6


R3+R2

−→

 1© 4 1 2

0 0 -1© 0

0 0 0 -6©


This matrix corresponds to the equations:

x + 4y + z = 2
− z = 0

0z =−6

There is no value of z such that 0z = −6. Therefore the system has no so-
lution.

System is inconsistent if after the elimination the column of right hand
sides contains a pivot.

Below is an example of an inconsistent system with obvious inconsistency.

x + y + z = 2
x + y + z = 3

z = 1
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14 – System of linear equations, Gaussian elimination Řy

Example

Solve the following system using Gaussian elimination.

x + 4y + z = 2
2x + 8y + z = 10
3x + 12y + 4z = 0

 1 4 1 2
2 8 1 10
3 12 4 0

R2−2R1

R3−3R1

−→

 1© 4 1 2
0 0 -1© 6
0 0 1 −6


R3+R2

−→

 1© 4 1 2
0 0 -1© 6
0 0 0 0


Back substitution:

x + 4y +z = 2 x + 4y + 1 · (−6) = 2 −→ x + 4y = 8
−z = 6 −z = 6 −→ z = −6

For any chosen value of y there is a unique value of x that satisfies the
equations. The system has infinitely many solutions.

For example

 0
2
−6

,

 4
1
−6

,

 8
0
−6

,

7.96
0.01
−6

 etc.

If we choose t as the value of y, than we get the corresponding value of x
from the first equation: x + 4t = 8, therefore x = 8− 4t.
All solutions can be wrtitten in the form x

y
z

 =

 8− 4t
t
−6

 =

 8
0
−6

+ t ·

−4
1
0


where t is any real number.

A system can have many solutions because some equations in the system
are redundant or because there are not ”enough” equations. Below are
some systems with obvious redundancy.

x + y + 3z = 2
2x + 2y + 6z = 4 (R2 = 2R1 )

x− y + z = 0

x + 2y + 3z = 2
x− y + 2z = 3

2x + y + 5z = 5 (R3 = R2+R1)
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15 – System of linear equations, Gaussian elimination Řy

Exercise

Solve the following system using Gaussian elimination.

x + y + 2z = 3
3x + 5y + 4z = 13
2x + 3y + 3z = 8
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16 – System of linear equations, Gaussian elimination Řy

Example

Solve the following system using Gaussian elimination.

x1 + x2 + x3 + x5 = 1
2x1 + 2x2 + 3x3 + x4 + x5 + 2x6 = 6
3x1 + 3x2 + 4x3 + x4 + 2x5 + 5x6 = 13

x1 + x2 + 3x3 + 2x4 − x5 + 4x6 = 9


1 1 1 0 1 0 1
2 2 3 1 1 2 6
3 3 4 1 2 5 13
1 1 3 2 −1 4 9

R2−2R1

R3−3R1

R4−R1

−→


1 1 1 0 1 0 1
0 0 1 1 −1 2 4
0 0 1 1 −1 5 10
0 0 2 2 −2 4 8

R3−R2

R4−2R2

−→

−→


1 1 1 0 1 0 1
0 0 1 1 −1 2 4
0 0 0 0 0 3 6
0 0 0 0 0 0 0


The variables in the pivotal columns x1, x2 and x5 are called basic vari-
ables. The other variables x3 and x4 are called free variables.

Back substitution:

x1 + x2 + x3 + x5 = 1 x1 + r + (t− s) + t = 1 −→ x1 = 1− r− 2t + s
−→ x2 = r

x3 + x4− x5 +2x6 = 4 x3 + s− t + 2 · 2 = 4 −→ x3 = t− s
−→ x4 = s
−→ x5 = t

3x6 = 6 −→ x6 = 2

t, r and s are any real number.

The general solution is:


x1
x2
x3
x4
x5
x6

 =


1− r− 2t + s

r
t− s

s
t
2

 =


1
0
0
0
0
2

+


−r

r
0
0
0
0

+


−2t

0
t
0
t
0

+


s
0
−s

s
0
0

 =

=


1
0
0
0
0
2

+ r ·


−1

1
0
0
0
0

+ t ·


−2

0
1
0
1
0

+ s ·


1
0
−1

1
0
0


Verify that the solution is correct:

R1: (1− r− 2t + s) + r + (t− s) + t = 1 3

R2: 2(1− r− 2t + s) + 2r + 3(t− s) + s + t + 2 · 2 =

= 2− 2r− 4t + 2s + 2r + 3t− 3s + s + t + 4 = 6 3

R3: 3(1− r− 2t + s) + 3r + 4(t− s) + s + 2t + 5 · 2 =

= 3− 3r− 6t + 3s + 3r + 4t− 4s + s + 2t + 10 = 13 3

R4: (1− r− 2t + s) + r + 3(t− s) + 2s− t + 4 · 2 =

= 1− r− 2t + s + r + 3t− 3s + 2s− t + 8 = 9 3
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Gaussian elimination is sequence of elementary row operations performed
on the augmented matrix of a linear system to convert the matrix into so
called row echelon form.

Definition

A matrix is said to be in row echelon form if each row except for the
first starts with more zero then the row above it

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


∗ nonzero pivot
∗ any number
basic (pivot) columns

Columns containing a pivot are called basic columns or pivot columns.

Every matrix can be transformed into a matrix in row echelon form. Be-
cause the process is flexible, the numbers in the echelon form are not
uniquely determined. Nevertheless, it can be proven that the ”shape” of
the echelon form and in particular the position and number of pivots is
uniquely determined by the matrix.

Definition

The rank of a matrix A is the number of nonzero rows in the matrix in
row echelon form obtained from matrix A by Gaussian elimination. It
is denoted by rank(A).

There are three possibilities for the number of solutions of a linear system:

• A system has no solution if one of the pivots sits in the right-hand side
column.

For example:


∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 0



• A system has one solution if none of the pivots sit in the right-hand side
column and the number of variables is equal to the number of nonzero
rows.

For example:


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0



• A system has infinitely many solutions if none of the pivots sit in the
right-hand side column and the number of variables is less than the num-
ber of nonzero rows.

For example:


∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0
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Exercise

Solve the following system using Gaussian elimination.

2x + 4y − 6z + 2w = 2
5x +10y −15z − 4w = 1
−3x − 6y + 9z − 2w = 6



Worksheets for Mathematics I

19 – System of linear equations, Gaussian elimination Řy

Exercise

Solve the following system using Gaussian elimination.

x + 2y + z + 2w = 0
2x + 4y + 4z + 4w = 4
3x + 6y + 5z + 6w = 4
−x − 2y + z − 2w = 4
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Example

Find the price of those rolls from sushi bar.

h+ 5 f + 2u = 24
3h + 4 f + 2u = 23
4h + 2 f + u = 14

 1 5 2 24
3 4 2 23
4 2 1 14

R2−3R1

R3−4R1

−→

 1 5 2 24

0 -11 −4 −49
0 −18 −7 −82


11R3−18R2

−→

 1 5 2 24

0 -11 −4 −49
0 0 -5 −20



h + 5 f + 2u = 24 h + 15 + 8 = 24 −→ h = 1
−11 f − 4u = −49 −11 f − 16 = −49 −→ f = 3

− 5u = −20 −→ u = 4

One hosomaki roll costs 1 coin, one futomaki roll costs 3 coins and one uramaki roll costs 4 coins.
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Gauss-Jordan elimination is a modification of Gaussian elimination with
two differences. All pivots are forced to be 1 and all entries not only below
but also above them are eliminated.

Example

Solve the following system using Gauss-Jordan elimination.

x + 5y + 2z = −2
−2x − 8y + 4z = 14

x + 8y + 9z = 3

We perform elimination to transform the coefficient matrix in row echelon
form.  1 5 2 −2

−2 −8 4 14
1 8 9 3

R2−2R1

R3−R1

−→

 1 5 2 −2
0 2 8 10
0 3 7 5

R2/2 −→

−→

 1 5 2 −2

0 1 4 5
0 3 7 5


R3−3R2

−→

 1 5 2 −2

0 1 4 5
0 0 -5© −10


R3/−5

−→

The matrix is now in row echelon form. But instead of stopping we con-
tinue and eliminate all entries above pivots.

−→

 1 5 2 −2

0 1 4 5

0 0 1 2

R1−2R3

R2−4R3−→

 1 5 0 −6

0 1 0 −3

0 0 1 2

R1−5R2

−→

−→

 1 0 0 9
0 1 0 −3
0 0 1 2

 The solution is: x
y
z

 =

 9
−3

2



Definition

A matrix is said to be in reduced row echelon form if
• it is in row echelon form,
• all pivots are 1, and
• all entries above each pivot are zero.

1 0 ∗ 0 ∗ ∗ 0 ∗
0 1 ∗ 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0

 ∗ any number

If a matrix A is transformed into a matrix in reduced row echelon form, not
only the shape of it is uniquely determined by A but also all the entries.

There is a unique matrix in row echelon form associated with any matrix
A. It is usually denoted by rref(A).
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Example

Solve the following system using Gauss-Jordan elimination.

x1 + 2x2 − 3x3 + 3x4 + 3x5 + 2x6 = 5
2x1 + 4x2 − 3x3 + 4x4 + 7x5 + 10x6 = 21
3x1 + 6x2 − 3x3 + 6x4 +12x5 + 14x6 = 29

x1 + 2x2 − 3x3 + 4x4 + 4x5 = 2


1 2 −3 3 3 2 5
2 4 −3 4 7 10 21
3 6 −3 6 12 14 29
1 2 −3 4 4 0 2

R2−2R1

R3−3R1

R4−R1

−→


1 2 −3 3 3 2 5
0 0 3 −2 1 6 11
0 0 6 −3 3 8 14
0 0 0 1 1 −2 −3

R3−2R2

−→


1 2 −3 3 3 2 5
0 0 3 −2 1 6 11
0 0 0 1 1 −4 −8
0 0 0 1 1 −2 −3


R4−R3

−→


1 2 −3 3 3 2 5
0 0 3 −2 1 6 11
0 0 0 1 1 −4 −8
0 0 0 0 0 2 5


R1−R4

R2−3R4

R3+2R4

−→

At this point, the forward part of Gaussian elimination is finished. The coefficient matrix is in echelon form. The following additional row operations are
performed to transform the matrix to reduced echelon form.

−→


1 2 −3 3 3 0 0
0 0 3 −2 1 0 −4
0 0 0 1 1 0 2
0 0 0 0 0 2 5


R1−3R3

R2+2R3 −→


1 2 −3 0 0 0 −6
0 0 3 0 3 0 0
0 0 0 1 1 0 2
0 0 0 0 0 2 5


R1+R2

−→


1 2 0 0 3 0 −6
0 0 3 0 3 0 0
0 0 0 1 1 0 2
0 0 0 0 0 2 5

R2/3

R4/2

−→


1 2 0 0 3 0 −6
0 0 1 0 1 0 0
0 0 0 1 1 0 2
0 0 0 0 0 1 5/2



The solution is:


x1
x2
x3
x4
x5
x6

 =


−6− 2s− 3t

s
−t

2− t
t

5/2

 =


−6

0
0
2
0

5/2

+ s ·


−2

1
0
0
0
0

+ t ·


−3

0
−1
−1

1
0



Verify that the solution is correct:

R1: (−6− 2s− 3t) + 2s− 3(−t) + 3(2− t) + 3t + 2 · (5/2) = 5 3

R2: 2(−6− 2s− 3t) + 4s− 3(−t) + 4(2− t) + 7t + 10 · (5/2) = 21 3

R3: 3(−6− 2s− 3t) + 6s− 3(−t) + 6(2− t) + 12t + 14 · (5/2) = 29 3

R4: (−6− 2s− 3t) + 2s− 3(−t) + 4(2− t) + 4t = 2 3
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Exercise

Solve the following system using Gauss-Jordan elimination.

x2 − 4x3 + x4 = 4
2x1 + x2 + 2x3 − 8x5 = 3
3x1 + 2x2 + x3 + x4 − 13x5 = 7
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24 – System of linear equations, Gauss-Jordan elimination Řy

Exercise

Solve the following system using Gauss-Jordan elimination.

5x + 10y + 5z = 1005
100x − y + 4z = 0

2x + 10z = 2
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Example

Use the Gauss-Jordan elimination to solve the following three systems with the same coefficient matrix at the same time.

x + 3y + z = 7
2x + y + z = 0
3x + y + 4z = 9

x + 3y + z = 4
2x + y + z = 2
3x + y + 4z = 5

x + 3y + z = 8
2x + y + z = 6
3x + y + 4z = 8

 1 3 1 7 4 8
2 1 1 0 2 6
3 1 4 9 5 8

R2−2R1

R3−3R1

−→

 1 3 1 7 4 8
0 -5 −1 −14 −6 −10
0 −8 1 −12 −7 −16


5R3−8R2

−→

 1 3 1 7 4 8
0 -5 −1 −14 −6 −10
0 0 13 52 13 0


R3/13

−→

 1 3 1 7 4 8
0 -5 −1 −14 −6 −10
0 0 1 4 1 0

R1−R3

R2+R3 −→

−→

 1 3 0 3 3 8
0 -5 0 −10 −5 −10
0 0 1 4 1 0

R2/−5 −→

 1 3 0 3 3 8
0 1 0 2 1 2
0 0 1 4 1 0

R1−3R2

−→

 1 0 0 −3 0 2
0 1 0 2 1 2
0 0 1 4 1 0



The solution of the first system is: x
y
z

 =

−3
2
4


Verify that the solution is correct:

R1: − 3 + 6 + 4 = 7 3

R2: − 6 + 2 + 4 = 0 3

R3: − 9 + 2 + 16 = 9 3

The solution of the second system is: x
y
z

 =

 0
1
1


Verify that the solution is correct:

R1: 0 + 3 + 1 = 4 3

R2: 0 + 1 + 1 = 2 3

R3: 0 + 1 + 4 = 5 3

The solution of the third system is: x
y
z

 =

 2
2
0


Verify that the solution is correct:

R1: 2 + 6 + 0 = 8 3

R2: 4 + 2 + 0 = 6 3

R3: 6 + 2 + 0 = 8 3
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Definition

A system of linear equations with the right-hand side consisting entirely
of zeros is said to be homogeneous.

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0 ,

A system with at least one nonzero number on the right-hand side is
called nonhomogeneous.

For example:
An nonhomogeneous system

x + 4y − z + 2w = 2
5x + y − z − 4w = 1
−3x − 6y + z − 2w = 0

and the associated homogenous system

x + 4y − z + 2w = 0
5x + y − z − 4w = 0
−3x − 6y + z − 2w = 0

A homogeneous system has always at least one solution, the trivial solu-
tion consisting of all zeros.

Exercise

Solve the following system.

−x + y − z = 0
3x − y − z = 0
2x + y −3z = 0
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There is a close relation between the solution of a nonhomogeneous system and the solution of the associated homogeneous one.

Example

Find and compare solutions to the following systems.

x1 + x2 − x3 + x4 + x5 = 0
−x1 + 2x2 + x3 − x5 = 0
−x1 − x2 + x3 + x4 + 5x5 = 0

x1 + x2 − x3 + x4 + x5 = 9
−x1 + 2x2 + x3 − x5 = 5
−x1 − x2 + x3 + x4 + 5x5 = 1

x1 + x2 − x3 + x4 + x5 = −6
−x1 + 2x2 + x3 − x5 = 6
−x1 − x2 + x3 + x4 + 5x5 = 0

The elimination will be performed on all three systems at the same time. 1 1 −1 1 1 0 9 −6
−1 2 1 0 −1 0 5 6
−1 −1 1 1 5 0 1 0

R2+R1

R3+R1

−→


1 1 −1 1 1 0 9 −6
0 3 0 1 0 0 14 0
0 0 0 2 6 0 10 −6


R3/2

−→

 1 1 −1 1 1 0 9 −6

0 3 0 1 0 0 14 0

0 0 0 1 3 0 5 −3

R1−R3

R2−R3 −→

−→

 1 1 −1 0 −2 0 4 −3
0 3 0 0 −3 0 9 3
0 0 0 1 3 0 5 −3

R2/3 −→

 1 1 −1 0 −2 0 4 −3
0 1 0 0 −1 0 3 1
0 0 0 1 3 0 5 −3

R1−R2

−→

 1 0 −1 0 −1 0 1 −4
0 1 0 0 −1 0 3 1
0 0 0 1 3 0 5 −3



x1 − x3 − x5 = 0
x2 − x5 = 0

x4 + 3x5 = 0

x1 = t + s
x2 = t
x3 = s
x4 = −3t
x5 = t

x1
x2
x3
x4
x5

 = t


1
1
0
−3

1

+ s


1
0
1
0
0



x1 − x3 − x5 = 1
x2 − x5 = 3

x4 + 3x5 = 5

x1 = 1 + t + s
x2 = 3 + t
x3 = s
x4 = 5− 3t
x5 = t

x1
x2
x3
x4
x5

 =


1
3
0
5
0

+ t


1
1
0
−3

1

+ s


1
0
1
0
0



x1 − x3 − x5 = −4
x2 − x5 = 1

x4 + 3x5 = −3

x1 = −4 + t + s
x2 = 1 + t
x3 = s
x4 = −3− 3t
x5 = t

x1
x2
x3
x4
x5

 =


−4

1
0
−3

0

+ t


1
1
0
−3

1

+ s


1
0
1
0
0


A general solution of the nonhomogeneous system is the sum of a so called particular solution (the green part) and the solution of the associated homoge-
neous system (the blue part).
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Exercise

Find the solution to the following systems.

x1 + x2 − x3 + x4 + x5 = 0
−x1 + 2x2 + x3 − x5 = 0
−x1 − x2 + x3 + x4 + 5x5 = 0

x1 + x2 − x3 + x4 + x5 = 1
−x1 + 2x2 + x3 − x5 = 1
−x1 − x2 + x3 + x4 + 5x5 = 2
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30 – Matrix algebra Řy

Definition

An array of numbers (real or complex) is called a matrix.

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
am1 am2 am3 · · · amn


The number aij in the ith row and jth column is called an entry of the
matrix. It can be also denoted (A)ij.
The size of the matrix is denoted m× n (pronounced ”m by n”).
The entries a11, a22, a33, . . . make up the main diagonal.

For example (main diagonals are blue):

 1 5 7
1 4 3
3 7 8

  2 4 5 1 1
0 4 1 4 0
1 0 5 2 4




2 4 5 1
0 4 1 4
1 0 5 2
1 1 5 1
1 4 0 3
1 2 0 2


Definition

A matrix is called a square matrix when it has the same number of rows
and columns.
Otherwise the matrix is said to be rectangular.

Definition

Matrices with all entries equal to zero are called zero matrices and are
denoted O.
Square matrices with ones on the main diagonal and zeros everywhere
else are called identity matrices and are denoted I.

For example:

O =

 0 0
0 0
0 0

 I =
(

1 0
0 1

)
I =

 1 0 0
0 1 0
0 0 1

 I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Definition

A square matrix is called lower triangular if all the entries above the
main diagonal are zero.
A square matrix is called upper triangular if all the entries below the
main diagonal are zero.

For example:

L =

 1 0 0
1 2 0
3 7 1

 L =


1 0 0 0
0 4 0 0
1 0 0 0
0 −1 2/7 8

 U =


1 0 1 4
0 6 1 1
0 0 2 3
0 0 0 1
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Definition

The product of a number k and a matrix A is defined to be the matrix
obtained by multiplying each entry of A by k.

(k ·A)ij = k · aij

For example:

3

 1 1
2 0
3 8

 =

 3 3
6 0
9 24


Definition

The sum of two matrices Am×n and Bm×n is defined to be the m×n
matrix obtained by adding corresponding entries.

(A + B)ij = aij + bij

For example:  1 1
2 0
3 8

+

 1 0
3 5
3 4

 =

 2 1
5 5
6 12



Addition laws:

A + B = B + A (commutative law)
k · (A + B) = k ·A + k · B (distributive law)

A + (B + C) = (A + B) + C (associative law)

Definition

The transpose of Am×n is defined to be the n×m matrix AT obtained by
flipping A over its main diagonal.

(AT)ij = aji

For example: (
1 3 7
2 8 1

)T
=

 1 2
3 8
7 1


It is evident that for all matrices, (AT)T = A.

Exercise

Let A and B be the matrices as follows. Determine the matrices
3 ·A + 2 · B and AT.

A =

(
2 −2 1
0 7 −1

)
B =

(
1 0 5
−1 −2 100

)
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Definition

The product of two matrices Am×p and Bp×n is defined to be the m×n
matrix whose ijth entry is obtained by “multiplying” ith row of A with
jth column of B as follows:

(A · B)ij =
p

∑
k=1

aik · bkj

For example:

a)

(
1 2 3

0 7 0

) 4
4
4

 =

(
1·4 + 2·4 + 3·4
0·4 + 7·4 + 0·4

)
=

(
24

28

)

b)

(
1 2 3

0 7 0

) 5
5
5

 =

(
1·5 + 2·5 + 3·5
0·5 + 7·5 + 0·5

)
=

(
30

35

)

c)

(
1 2 3

0 7 0

) 4 5
4 5
4 5

 =

(
24 30

38 35

)

Exercise

Evaluate the following: 2 1 2 −6 −5
0 1 −4 1 0
3 1 1 1 −3




2
1
0
1
1
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Exercise

Evaluate the following:

a)


3 2
0 6
5 1
4 −1
1 2


(

2
1

)
b)

 1 2 0
0 6 −1
−1 1 2

 2 0
1 3
2 4

 c)
(

1 0
0 1

)(
2 3
−4 −6

)
d)


3 2
0 6
5 1
4 −1




2
1
0
2
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Exercise

Find A · B and B ·A for the following matrices.

A =

(
−2 6

1 −3

)
B =

(
1 2 0
2 4 1

)

Exercise

Find A · B and B ·A for the following matrices.

A =
(

1 7 3
)

B =

 2
0
1



Exercise

Find A · B and B ·A for the following matrices.

A =

(
−2 6

1 −3

)
B =

(
1 2
2 4

)

For most matrices
A · B 6= B ·A

even when both products exist and have the same shape.
Matrix multiplication is not comutative.
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Exercise

Find (A · B) · C and A · (B · C) for the following matrices.

A =

(
2 1
6 −1

)
B =

(
2 0
1 3

)
C =

(
5 4
−1 2

)
Multiplication laws:

A · (B · C) = (A · B) · C (associative law)
(A + B) · C = A · C + B · C (distributive law)
C · (A + B) = C ·A + C · B (distributive law)

Because A · (B · C) = (A · B) · C, there is no need to write parentheses
and we can simply write A · B · C.

A · (B · C) = (A · B) · C = A · B · C

Similarly, can write A3 instead of A ·A ·A, etc.

Definition

For any positive integer k the kth power of the square matrix A is de-
fined as the product of k matrices A.

Ak = A ·A ·A . . . A︸ ︷︷ ︸
k times

A matrix to the zeroth power is defined to be the identity matrix of the
same size A0 = I.
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Example

Evaluate the following: 1 2 4
1 3 5
1 3 6

 1 1
1 1
1 1



Example

Evaluate the following: 3 0 −2
−1 2 −1

0 −1 1

 7 7
9 9

10 10



Example

Evaluate the following: 1 2 4
1 3 5
1 3 6

 3 0 −2
−1 2 −1

0 −1 1



Definition

A square matrix A is called invertible if there exists a matrix A−1 such
that

A ·A−1 = A−1 ·A = I

The matrix A−1 is called the inverse of A.
A square matrix which is not invertible is called singular.

Although not all matrices are invertible, when an inverse exists, it is
unique.
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Gauss-Jordan elimination can be used to compute an inverse.
Example

Find the inverse of the matrix A.

A =

 1 2 4
1 3 5
1 3 6



( A | I )=

 1 2 4 1 0 0
1 3 5 0 1 0
1 3 6 0 0 1

R2−R1

R3−R1

−→

 1 2 4 1 0 0
0 1 1 −1 1 0
0 1 2 −1 0 1

R1−R2

R3−R2

−→

−→

 1 0 2 3 −2 0
0 1 1 −1 1 0
0 0 1 0 −1 1

R1− 2R3

R2−R3 −→

 1 0 0 3 0 −2
0 1 0 −1 2 −1
0 0 1 0 −1 1

=( I | A−1)

A−1 =

 3 0 −2
−1 2 −1

0 −1 1



Verify that the solution is correct:

A ·A−1 =

 1 2 4
1 3 5
1 3 6

 3 0 −2
−1 2 −1

0 −1 1

 =

 1 0 0
0 1 0
0 0 1



A−1 ·A =

 3 0 −2
−1 2 −1

0 −1 1

 1 2 4
1 3 5
1 3 6

 =

 1 0 0
0 1 0
0 0 1



Example

Find the inverse of the matrix A.

A =

 1 1 1
0 1 2
1 2 3



( A | I ) =

 1 1 1 1 0 0
0 1 2 0 1 0
1 2 3 0 0 1


R3−R1

−→

 1 1 1 1 0 0
0 1 2 0 1 0
0 1 2 −1 0 1


R3−R2

−→

−→

 1 1 1 1 0 0
0 1 2 0 1 0
0 0 0 −1 −1 1


The matrix A cannot be reduced to an identity matrix because a zero row
emerged during elimination. Therefore A is singular.

A n× n matrix is invertible if and only if its rank is n.

For two invertible matrices A and B, the following properties hold.

• (A−1)−1 = A

• The product A · B is also invertible.

• (A · B)−1 = B−1 ·A−1 (the reverse order law for inversion)
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Example

Find the inverse of the matrix A.

A =

 1 3 1
2 8 1
3 1 4



( A | I )=

 1 3 1 1 0 0
2 8 1 0 1 0
3 1 4 0 0 1

R2−2R1

R3−3R1

−→

 1 3 1 1 0 0
0 2 −1 −2 1 0
0 −8 1 −3 0 1


R3+4R2

−→

 1 3 1 1 0 0
0 2 −1 −2 1 0
0 0 −3 −11 4 1

3R1

3R2 −→

 3 9 3 3 0 0
0 6 −3 −6 3 0
0 0 −3 −11 4 1

R1+R3

R2−R3 −→

−→

 3 9 0 −8 4 1
0 6 0 5 −1 −1
0 0 −3 −11 4 1

2R1

3R2 −→

 6 18 0 −16 8 2
0 18 0 15 −3 −3
0 0 −3 −11 4 1

R1−R2

−→

 6 0 0 −31 11 5
0 18 0 15 −3 −3
0 0 −3 −11 4 1

R1/6

R2/18

R3/(−3)

−→


1 0 0 −31/6 11/6 5/6

0 1 0 5/6 −1/6 −1/6

0 0 1 11/3 −4/3 −1/3

= ( I | A−1 )

A−1 = 1/6

−31 11 5
5 −1 −1

22 −8 −2


Verify that the solution is correct:

A ·A−1 =

 1 3 1
2 8 1
3 1 4

 1/6

−31 11 5
5 −1 −1

22 −8 −2

 = 1/6

 6 0 0
0 6 0
0 0 6

 =

 1 0 0
0 1 0
0 0 1



A−1 ·A = 1/6

−31 11 5
5 −1 −1

22 −8 −2

 1 3 1
2 8 1
3 1 4

 = 1/6

 6 0 0
0 6 0
0 0 6

 =

 1 0 0
0 1 0
0 0 1
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Exercise

Find the inverse of the matrix A.

A =

−3 −1 3
1 −3 −1
−2 5 3
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Exercise

Find the inverse of the matrix A.

A =

 3 5 2
−1 −3 0

0 −2 1
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Exercise

Find the inverse of the matrix A.

A =


1 0 0 0 2
0 1 0 0 0
5 0 1 0 0
0 −3 0 1 0
0 0 0 −1 1
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Exercise

Find the inverse of the matrix A and B.

a) A =

(
1 2
3 4

)
b) B =

(
3 9
2 6

)
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A system of linear equations can be written as a matrix equation.

A system of linear equations: x1 + 3x2 + x3 = 2
2x1 + 8x2 + x3 = 4
3x1 + x2 + 4x3 = 0

Its corresponding
matrix equation:

 1 3 1
2 8 1
3 1 4

 x1
x2
x3

 =

 2
4
0


A · x = b

The matrix equation A · X = B can be solved if the matrix A is invertible:

A · X = B

A−1 ·A · X = A−1 · B multiply by A−1 from the left

A−1 ·A︸ ︷︷ ︸
I

·X = A−1 · B

I · X = A−1 · B
X = A−1 · B

The matrix equation X ·A = B can be solved if the matrix A is invertible:

X ·A = B

X ·A ·A−1 = B ·A−1 multiply by A−1 from the right

X ·A ·A−1︸ ︷︷ ︸
I

= B ·A−1

X · I = B ·A−1

X = B ·A−1

Example

Solve the following matrix equation Ax = b. 1 3 1
2 8 1
3 1 4

 x1
x2
x3

 =

 2
4
0


A · x = b

Matrix A has the inverse A−1 = 1/6

−31 11 5
5 −1 −1

22 −8 −2

, see worksheet 38.

A · x = b

A−1 ·A · x = A−1 · b
x = A−1 · b

x = A−1 ·b = 1/6

−31 11 5
5 −1 −1

22 −8 −2

 2
4
0

 = 1/6

−18
6

12

 =

−3
1
2



Verify that the solution is correct:

A · x =

 1 3 1
2 8 1
3 1 4

−3
1
2

 =

 2
4
0

 = b 3
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Example

Solve the following matrix equation for the unknown matrix X.

X · F ·G = B F =

(
0 −1
2 5

)
G =

(
2 −7
−1 4

)
B =

(
−1 8
−1 12

)

( F | I )=
(

0 −1 1 0
2 5 0 1

)
R2↔R1

−→
(

2 5 0 1
0 −1 1 0

)
R1+5R2−→

(
2 0 5 1
0 −1 1 0

)
R1/2

R2/−1
−→
(

1 0 5/2 1/2

0 1 −1 0

)
= ( I | F−1 )

( G | I )=
(

2 −7 1 0
−1 4 0 1

)
R2↔R1

−→
(
−1 4 0 1

2 −7 1 0

)
R2+2R1

−→
(
−1 4 0 1

0 1 1 2

)
R1− 4R2−→

(
−1 0 −4 −7

0 1 1 2

)
R1/−1−→

(
1 0 4 7
0 1 1 2

)
= ( I | G−1 )

Matrices F and G are invertible. Their inverses are F−1 = 1/2

(
5 1
−2 0

)
and G−1 =

(
4 7
1 2

)
.

X · F ·G = B

X · F ·G ·G−1 = B ·G−1

X · F = B ·G−1

X · F · F−1 = B ·G−1 · F−1

X = B ·G−1 · F−1

X =

(
−1 8
−1 12

)(
4 7
1 2

)
1/2

(
5 1
−2 0

)
= 1/2

(
4 9
8 17

)(
5 1
−2 0

)
= 1/2

(
2 4
6 8

)
=

(
1 2
3 4

)

Verify that the solution is correct:

X · F ·G =

(
1 2
3 4

)(
0 −1
2 5

)(
2 −7
−1 4

)
=

(
4 9
8 17

)(
2 −7
−1 4

)
=

(
−1 8
−1 12

)
= B 3
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Exercise

Solve the following matrix equations for the unknown matrix X. The matrices C, F and G are invertible.

a) C · X = B b) X · C = B c) C · F · X = B d) C · X · F = B e) C · F ·G · X = B
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Example

Solve the following matrix equation for the unknown matrix X.

F · X ·G = B F =

(
0 −1
2 5

)
G =

(
2 −7
−1 4

)
B =

(
−1 8
−1 12

)
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Example

Solve the following matrix equation for the unknown matrix X.

F ·G · X = B F =

 1 0 1
2 2 3
5 −1 2

 G =

 1 0 0
−3 1 0

5 0 2

 B =

 6 2 4
9 10 3

19 2 15
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Example

Solve the following matrix equation for the unknown matrix X.

a) A · x = b b) A · x = c c) A · x = d A =

 1 2 4
1 3 5
1 3 6

 b =

 4
4
1

 c =

 10
10
20

 d =

 0
0
0
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Exercise

What matrix will perform the following?

(
· · · ·

)
1 2 0
0 2 1
−1 2 3

4 2 1

 =
(
−1 2 3

)

What matrix will perform the following?

(
· · · ·

)
1 2 0
0 2 1
−1 2 3

4 2 1

 =
(

4 2 1
)

Exercise

What matrix will swap the first and the third row?
· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
−1 2 3

4 2 1

 =


−1 2 3

0 2 1
1 2 0
4 2 1


And what matrix will swap them back?

· · · ·
· · · ·
· · · ·
· · · ·



−1 2 3

0 2 1
1 2 0
4 2 1

 =


1 2 0
0 2 1
−1 2 3

4 2 1
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Exercise

What matrix will multiply the third row by five?
· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
−1 2 3

4 2 1

 =


1 2 0
0 2 1

−10 10 15
4 2 1


And what matrix will change it back?

· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1

−10 10 15
4 2 1

 =


1 2 0
0 2 1
−1 2 3

4 2 1



Exercise

What matrix will add the first row to the third one?
· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
−1 2 3

4 2 1

 =


1 2 0
0 2 1
0 4 3
4 2 1


And what matrix inverts it back?

· · · ·
· · · ·
· · · ·
· · · ·




1 2 0
0 2 1
0 4 3
4 2 1

 =


1 2 0
0 2 1
−1 2 3

4 2 1
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Definition

Elementary matrices are square matrices that can be obtained from the
identity matrix by performing one single elementary row operation.

For every elementary row operation there is a elementary matrix such that
multiplying by it from the left performs the operation.
For example:
• Interchanging two rows:

P =

 0 1 0
1 0 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 0 1
1 0 0
0 1 0

 · · ·

• Multiplying a row by a nonzero number α:

E11 =

 α 0 0
0 1 0
0 0 1

 E22 =

 1 0 0
0 α 0
0 0 1

 E33 =

 1 0 0
0 1 0
0 0 α


• Adding multiple of one row to another row.

E13 =

 1 0 0
0 1 0
α 0 1

 E12 =

 1 0 0
α 1 0
0 0 1

 E23 =

 1 0 0
0 1 0
0 α 1

 . . .

Definition

A matrix that can be obtained from the identity matrix by swapping two
or more rows is called permutation matrix.

Exercise

What row operation is performed by matrix E12? 1 0 0
−5 1 0

0 0 1

 1 1 1
1 1 1
1 1 1

 =

 · · ·· · ·
· · ·


E12
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Exercise

What are inverses of the matrices E12 and E23?

E12 =

 1 0 0
−5 1 0

0 0 1

 E23 =

 1 0 0
0 1 0
0 −2 1



Exercise

Determine the matrix B. (Start with E12A.) 1 0 0
0 1 0
0 −2 1

 1 0 0
−5 1 0

0 0 1

 1 1 1
1 1 1
1 1 1

 =

 · · ·· · ·
· · ·


E23 · (E12 · A) = B

What elementary matrices will recover the matrix A from B. 1 1 1
1 1 1
1 1 1

 =

 · · ·· · ·
· · ·

 · · ·· · ·
· · ·

 · · ·· · ·
· · ·


A = ? · ? · B
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Some square matrices A can be decomposed into two matrices, a lower
triangular matrix L and an upper triangular matrix U such that A = L·U.
Such a decomposition is called the LU factorization of A. It may be found
by performing Gaussian elimination. This will be demonstrated on the
following example.

Example

Find the LU factors the matrix A.

A =

 1 1 1
5 6 9
3 5 13


The elimination performed on the matrix A produces the wanted matrix U. 1 1 1

5 6 9
3 5 13


R2−5R1
−→

 1 1 1
0 1 4
3 5 13


R3−3R1

−→

 1 1 1
0 1 4
0 2 10


R3−2R2

−→

 1 1 1
0 1 4
0 0 2


A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U

Each one of these row operations can be carried out as multiplication by
an elementary matrix. 1 0 0

0 1 0
0 −2 1

 1 0 0
0 1 0
−3 0 1

 1 0 0
−5 1 0

0 0 1

 1 1 1
5 6 9
3 5 13

 =

 1 1 1
0 1 4
0 0 2


E23 · E13 · E12 · A = U

E23 · E13 · E12 ·A = U

E13 · E12 ·A = E−1
23 ·U

E12 ·A = E−1
13 · E

−1
23 ·U

A = E−1
12 · E

−1
13 · E

−1
23︸ ︷︷ ︸

L

·U

L =

 1 0 0
5 1 0
0 0 1

 1 0 0
0 1 0
3 0 1

 1 0 0
0 1 0
0 2 1

 =

 1 0 0
5 1 0
3 2 1


E−1

12 · E−1
13 · E−1

23

Thus  1 1 1
5 6 9
3 5 13

 =

 1 0 0
5 1 0
3 2 1

 1 1 1
0 1 4
0 0 2


A = L · U

The matrix L has ones on its diagonal. Entries below the diagonal are
called multipliers. The multiplier `ij is the number used in the elimination
to annihilate the ij-position: Ri − `ijRj

`ij =
entry to eliminate in row i

pivot in row j

L =

 1 0 0
`21 1 0
`31 `32 1

 =

 1 0 0
5 1 0
3 2 1


A square matrix A can be decomposed into L·U if there was no need to
exchange rows during the elimination. Otherwise the factorization has the
form P·A = L·U, where P is a permutation matrix.
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LU factorization is a very useful tool for solving multiple systems with the same coefficient matrix and different
right-hand sides.

Example

Use the LU factorization of A to solve A·x = b. 1 1 1
5 6 9
3 5 13

 x1
x2
x3

 =

 0
1
4


Once the LU factors of A are known (see example on page 53), it is easy to solve A·x = b.

A · x = b
L ·U · x = b

L · (U · x︸︷︷︸
y

) = b

So insted of solving A·x = b, we solve two triangular systems L·y = b and U·x = y:

First

 1 0 0
5 1 0
3 2 1

 ·
 y1

y2
y3

=

 0
1
4


L · y = b

and then

 1 1 1
0 1 4
0 0 2

 ·
 x1

x2
x3

=

 ··
·


U · x = y

Forward substitution to get y:

y1 = 0
y2 = 1− 5y1 = 1
y3 = 4− 3y1 − 2y2 = 2

 1 1 1
0 1 4
0 0 2

 ·
 x1

x2
x3

 =

 0
1
2


Backward substitution to get x.

x1 = 0− x2 − x3 = 2
x2 = 1− 4x3 = −3
x3 = 2/2 = 1

The solution is: x1
x2
x3

 =

 2
−3

1
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Exercise

Use the LU factorization of A to solve A·x = b. 1 1 1
5 6 9
3 5 13

 x1
x2
x3

 =

 5
27
15
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Exercise

Find the LU factors of the matrix A.

A =

 3 6 1
−9 −22 4
−12 −36 19





Worksheets for Mathematics I

57 – Matrix algebra, LU factorization Řy

Exercise

Find the LU factors of the matrix A.

A =


6 −3 −9 3

24 −8 −29 13
−18 −11 −10 −9

4 6 −6 27
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Exercise

Find the LU factors of A and solve systems below. 2 1 4
4 1 15
8 7 −2

 x1
x2
x3

 =

 15
60
−15

  2 1 4
4 1 15
8 7 −2

 x1
x2
x3

 =

 200
400
800

  2 1 4
4 1 15
8 7 −2

 x1
x2
x3

 =

 0
0
0
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Definition

The determinant of a square 1×1 matrix A = (a11) is defined to be
the number a11.

The determinant of a square matrix A =

 a11 · · · a1n
... . . . ...

an1 · · · ann

 is defined to

be the number

det (A) =
n

∑
k=1

a1k(−1)1+k M1k

where Mij is the determinant of the (n−1)×(n−1) matrix that results
from A by removing its ith row and its jth column.
The number Cij = (−1)i+jMij is called the cofactor associated with the
position ij.
The determinant of the matrix A is denoted det(A), det A, or |A|.

The determinat of the matrix A=

(
a b
c d

)
is det (A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

Example

Compute the determinant of the matrix A =

(
1 −2
−1 −3

)
.

det (A) =

∣∣∣∣ 1 −2
−1 −3

∣∣∣∣ = 1 · (−3)− (−1) · (−2) = −3− 2 = −5

Exercise

Compute the determinant of the matrix B =

(
5 6
3 6

)
.

Exercise

Compute the determinant of the matrix C =

(
1 15
2 1

)
.
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Example

Compute the determinant of the matrix

 2 1 3
5 0 0
1 2 3

.

det (A) = 2 · (−1)2 ·
∣∣∣∣ 0 0

2 3

∣∣∣∣+ 1 · (−1)3 ·
∣∣∣∣ 5 0

1 3

∣∣∣∣+ 3 · (−1)4 ·
∣∣∣∣ 5 0

1 2

∣∣∣∣ =
= 2 · 0 + 1 · (−15) + 3 · 10 = 15

Rule of Sarrus for the determinant of a 3× 3 matrix A =

 a b c
d e f
g h i


a b
d e
g h

= aei + b f g + cdh −ceg− a f h− bdidet (A) =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣
Example

Compute the determinant of the matrix

 2 1 3
5 0 0
1 2 3

.

det (A) =

∣∣∣∣∣∣
2 1 3
5 0 0
1 2 3

∣∣∣∣∣∣
2 1
5 0
1 2

=

= 2 · 0 · 3 + 1 · 0 · 1 + 3 · 5 · 2 −1 · 0 · 3− 2 · 0 · 2− 3 · 5 · 1 =

= 0 + 0 + 30− 0− 0− 15 = 15

Exercise

Compute the determinant of the matrix

 1 5 2
0 6 3
−8 2 5

.

Exercise

Compute the determinant of the matrix

 4 2 1
0 0 3
2 0 1

.
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The determinant of the matrix An×n can be expressed by the folowing so called Laplace expansions or
cofactor expansions.

det (A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin expansion along the ith row
det (A) = a1jC1j + anjC2j + · · ·+ anjCnj expansion along the jth column

Example

Find the determinant of the matrix A=

 2 1 3
5 0 0
1 2 3

 by expanding it

a) along the third column

b) along the second row

a) det (A) = 3 · (−1)4 ·
∣∣∣∣ 5 0

1 2

∣∣∣∣+ 0 · (−1)5 ·
∣∣∣∣ 2 1

1 2

∣∣∣∣+ 3 · (−1)6 ·
∣∣∣∣ 2 1

5 0

∣∣∣∣ =
= 3 · 10− 0 + 3 · (−5) = 15

b) det (A) = 5 · (−1)3 ·
∣∣∣∣ 1 3

2 3

∣∣∣∣+ 0 · (−1)4 ·
∣∣∣∣ 2 3

1 3

∣∣∣∣+ 0 · (−1)5 ·
∣∣∣∣ 2 1

1 2

∣∣∣∣ =
= 5 · (−1) · (−3) + 0 + 0 = 15
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Exercise

Use Laplace expansion to evaluate the determinant of the following matrices.

A =

 4 2 1
0 0 3
2 0 1

 B =

 1 5 2
0 6 3
−8 2 5
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Example

Compute the determinant of the matrix A =


1 −2 1 3
4 0 1 0
−1 0 2 3

1 −2 1 1

.

Expansion along the second row: det (A) = a21C21 + a22C22 + a23C23 + a24C24

det (A) = 4·(−1)3·

∣∣∣∣∣∣
−2 1 3

0 2 3
−2 1 1

∣∣∣∣∣∣+ 0·(−1)4·

∣∣∣∣∣∣
1 1 3
−1 2 3
−1 1 1

∣∣∣∣∣∣+ 1·(−1)5·

∣∣∣∣∣∣
1 −2 3
−1 0 3

1 −2 1

∣∣∣∣∣∣+ 0·(−1)6·

∣∣∣∣∣∣
1 −2 1
−1 0 2

1 −2 1

∣∣∣∣∣∣ =
= 4 · (−1) · (−4− 6 + 0 + 12 + 6− 0) + 0 + 1 · (−1) · (0− 6 + 6− 0 + 6− 2) + 0 =

= (−4) · (8) + (−1) · (4) = −32− 4 = −36
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Exercise

Compute the determinant of the following matrices.

A =


0 3 1 0
−1 0 2 2

1 0 0 1
1 −2 −1 3

 B =


2 1 1 0
−3 0 2 0

0 0 2 1
1 −1 4 0
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Definition

The vector space Rn consist of all vectors

u1
u2...
un

with n real entries.

Any two vectors can be added together and any vector can be multiplied by a real number.u1
u2...
un

+

v1
v2...
vn

 =

 u1 + v1
u2 + v2...
un + vn

 c ·

u1
u2...
un

 =

 c · u1
c · u2...
c · un

 zero vector o =

 0
0
...
0



(
4
−1

)
(
−1

2

) (
−3

6

)

(
4
6

)(
8
5

)
(

0
0

) (
0.1
78

)R2
 0

5
0

  0
0
0


 2

1
1


 0

0√
6


 4

3
6


 6

3
3



 4
−2

6


 40

0.32
π

R3 
1
2
3
0




2
2
0
1

 
0
0
0
0


1
−1

1
2




3
4
3
1


3
−3

3
6



R4

R5, R6, . . .

Although we will only study the vector spaces Rn, there are other sets of objects that also form vector spaces.

v

u

u + v
w

3w

Arrow2

c

a b

b + c

2a

Arrow3
10

20

20

x2+5x−5

2x2+5

−x2+5x−10

−3x2+15x−30

Polynom2

Polynom3, Polynom4, . . .

All their objects (vectors) have some things in common. They can be added together, multiplied by a number,
there is a “zero” vector among them, etc.

There is a natural correspondence between some vector spaces. For example
Arrows2 ∼ R2, Arrows3 ∼ R3. There is no corresponding ”arrow” space for
R4, R5, . . .

-1

5

6

-1-3 4

v

u

u + v
w

3w

Arrows2 ∼ R2
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Definition

The vector w is a linear combination of the vectors v1, v2, . . . , vr if there are numbers c1, c2, . . . cr such that
w = c1v1 + c2v2 + · · ·+ crvr.

The vector

 3
3
4

 is a linear combination of the vectors

 0
0
1

,

 1
1
1

,

 2
2
2

 since

 3
3
4

 = 1 ·

 0
0
1

+ 1 ·

 1
1
1

+ 1 ·

 2
2
2

 or

 3
3
4

 = 1 ·

 0
0
1

+ 3 ·

 1
1
1

+ 0 ·

 2
2
2


This can be writtten as matrix equation: 0 1 2

0 1 2
1 1 2

 1
1
1

 =

 3
3
4

 or

 0 1 2
0 1 2
1 1 2

 1
3
0

 =

 3
3
4



Definition

For a set of vectors S = {v1, v2, . . . , vr} the span of S is the set of all linear combinations of vectors
v1, v2, . . . , vr. It is denoted span(S).
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Example

Is the vector w a linear combination of the vectors v1, v2, v3?

w =


0
3
0
0

, v1 =


2
0
0
0

, v2 =


1
0
2
1

, v3 =


0
0
5
1

.

We are looking for three numbers c1, c2, c3 such that

c1 ·


2
0
0
0

+ c2 ·


1
0
2
1

+ c3 ·


0
0
5
1

 =


0
3
0
0


This can be written as the matrix equation

2 1 0
0 0 0
0 2 5
0 1 1


 c1

c2

c3

 =


0
3
0
0


and solved by elimination.

2 1 0 0
0 0 0 3
0 2 5 0
0 1 1 0

R2↔ R4 −→


2 1 0 0
0 1 1 0
0 2 5 0
0 0 0 3


There is no solution, therefore the vector w is not a linear combination of
the vectors v1, v2, v3. In other words, the vector w is not in the span of
{v1, v2, v3}.

Example

Is the vector w a linear combination of the vectors v1, v2, v3?

w =


7
0
7
2

, v1 =


2
0
0
0

, v2 =


1
0
2
1

, v3 =


0
0
5
1

.

We are looking for three numbers c1, c2, c3 such that

c1 ·


2
0
0
0

+ c2 ·


1
0
2
1

+ c3 ·


0
0
5
1

 =


7
0
7
2


This can be written as the matrix equation

2 1 0
0 0 0
0 2 5
0 1 1


 c1

c2

c3

 =


7
0
7
2


and solved by elimination.

2 1 0 7
0 0 0 0
0 2 5 7
0 1 1 2

R2↔ R4 −→


2 1 0 7
0 1 1 2
0 2 5 7
0 0 0 0

R3−2R2
−→


2 1 0 7
0 1 1 2
0 0 3 3
0 0 0 0


Back substitution gives the solution c1 = 3, c2 = 1, c3 = 1. Therefore the
vector w is a linear combination of the vectors v1, v2, v3.

w = 3v1 + v2 + v3.
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Definition

The sequence of vectors 〈v1, v2, . . . , vr〉 is called linearly independent if the only solution to the equation

c1v1 + c2v2 + · · ·+ crvr = o
is c1 = c2 = · · · = cr = 0.
If there is a solution with at least one nonzero ci, the sequence of vectors is called linearly dependent.

Example

Decide whether the sequence of vectors 〈v1, v2, v3, v4, v5〉 is linearly independent.

v1 =


1
0
2
1

, v2 =


4
0
8
4

, v3 =


1
2
3
1

, v4 =


3
4
8
3

, v5 =


4
2
9
4

.


1 4 1 3 4 0
0 0 2 4 2 0
2 8 3 8 9 0
1 4 1 3 4 0

R3−2R1

R4−R1

−→


1 4 1 3 4 0
0 0 2 4 2 0
0 0 1 2 1 0
0 0 0 0 0 0

R2/2

2R3−R2

−→


1 4 1 2 4 0
0 0 1 2 1 0
0 0 0 0 0 0
0 0 0 0 0 0


R1−R2

−→


1 4 0 1 3 0
0 0 1 2 1 0
0 0 0 0 0 0
0 0 0 0 0 0


The system has infinitely many solutions.

−4v1 + v2 + 0v3 + 0v4 + 0v5 = o, 1v1 + 0v2 + 2v3 − v4 + 0v5 = o, . . .

Therefore the sequence 〈v1, v2, v3, v4, v5〉 is lineary dependent.

From the reduced row echelon form we can see that vectors v1 and v3 are in the basic columns. They are lineary
independent. The other vectors are their linear combination.

v2 = 4v1

v4 = v1 + 2v3

v5 = 3v1 + v3
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Exercise

Decide whether the sequence of vectors 〈v1, v2, v3, v4, v5〉 is linearly independent.

v1 =


1
0
1
2

, v2 =


3
0
3
6

, v3 =


0
1
1
1

, v4 =


5
1
6
11

, v5 =


2
2
4
6

.
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Definition

For two vectors u=


u1
u2
...

un

 and v=


v1
v2
...

vn

 of Rn their dot product

(or the standard inner product) is defined to be the number

u · v = u1v1 + u2v2 + · · ·+ unvn

Example

Find the dot product of the vectors u=

 1
2
3

 and v=

 0
−5

1

.

u · v = 1 · 0 + 2 · (−5) + 3 · 1 = 0− 10 + 3 = −7
Exercise

Find the dot product of the vectors u=

 2
−3

2

 and v=

 1
−4

3

.

The dot product able us to “measure” the magnitude and the angle of vec-
tors of Rn.

Definition

For the vector u=


u1
u2
...

un

 of Rn the magnitude of vector

(or the euclidean vector norm) is defined to be a number

‖u‖ =
√

u · u =
√

u2
1 + u2

2 + · · ·+ u2
n

Example

Find the magnitude of the vector u=

 3
1
4

.

‖u‖ =
√

32 + 12 + 42 =
√

26 .
= 5.09

Exercise

Find the magnitude of the vector u=

 1
−2

5

.
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Definition

For two nonzero vectors u and v of Rn the angle between them is de-
fined to be the number ϕ ∈ 〈0, π〉 such that

cos ϕ =
u · v
‖u‖‖v‖

Example

Find the angle of the vectors u=

 5
−4

3

 and v=

 2
1
3

.

u · v = 5 · 2 + (−4) · 1 + 3 · 3 = 15

‖u‖ =
√

52 + (−4)2 + 32 =
√

50

‖v‖ =
√

22 + 12 + 32 =
√

14

Enter the results into the formula.

cos ϕ =
u · v
‖u‖‖v‖ =

15√
50
√

14
.
= 0.5669

ϕ = 0.96 rad ϕ = 55.46◦

Exercise

Find the angle of vectors u and v.

a) u=

 1
−1

3

, v=

 3
4
0

 b) u=

 1
2
2

, v=

−2
3
−2
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Definition

Two vectors of Rn are said to be orthogonal or perpendicular (to each
other) whenever their dot product equals zero.

u · v = 0

Exercise

Deside, whether the vectors u and v are perpendicular.

a) u=

 1
−1

3

, v=

 3
4
0

 b) u=

 1
2
2

, v=

−2
3
−2



Exercise

Fill missing numbers, so that the vectors u and v are perpendicular.

a) u=

 4
0
2

, v=

−5
7
∗

 b) u=

 1
2
3

, v=

 ∗2
1
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Definition

Cartesian coordinate system (in 3D) consists of an ordered triplet of
orientated lines (the axes) pair-wise perpendicular that go through a
common point (the origin) and are pair-wise perpendicular; and a sin-
gle unit of length common for all three axes.
The axes are denoted x, y, z.
xy-plane, yz-plane, xz-plane are called coordinate planes.
System can be either right-handed or left-handed

y

z

x

right-handed

x

z

y

left-handed

In 3D space equipped with a Cartesian coordinate system, every point A is
uniquely determined by an ordered triplet of numbers [a1, a2, a3] as shown
in the picture below. The numbers are called coordinates of the point A.
We write this as A=[a1, a2, a3].

z

yx

a1 a2

a3

AO

From now on to conserve space we will write vectors from the space R3

differently. Instead of u =

(
u1
u2
u3

)
we will write u = (u1, u2, u3) (numbers

“laying down” and divided by commas).

Definition

Euclidean space E3 contains two sets of object. The set of all points
[a1, a2, a3] and the set of all vectors (u1, u2, u3) from the vector space R3

equipped with the dot product.
Both sets are “tied up” together, we can “add” point to a vector to get
another point

A + u = [a1 + u1, a2 + u2, a3 + u3].

For every (ordered) pair of points A=[a1, a2, a3] and B=[b1, b2, b3] there
is a unique vector

AB = (b1 − a1, b2 − a2, b3 − a3).

The distance of two points A and B is the magnitude of the vector AB.

Example

For the given points A=[2,−1, 5], B=[4, 1, 0] find the vector AB.

AB=(4− 2, 1− (−1), 0− 5) = (2, 2,−5)

Example

For the given point A = [3, 4, 1] and given vector u = (2,−2, 1) find the
coordinates of the following points:

a) A + u, b) A + 2u, c) A + 3u, d) A− u.
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Recall that two vectors are perpendicular if their dot product is zero.
For example: Vectors perpendicular to the vector (1, 0, 2) are (−2, 0, 1),
(4, 5,−2) . . . ,
vectors perpendicular to the vector (3, 4, 1) are e (1,−1, 1), (0, 1,−4) . . . .
Is there a way to find a vector that will be perpendicular to both of them?

Definition

For two vectors u = (u1, u2, u3) and v = (v1, v2, v3) of R3 their cross
product is defined to be the vector

u× v=(u2v3−u3v2, u3v1−u1v3, u1v2−u2v1)

The cross product u × v is perpendicular to the vector u and to the
vector v.

The cross product can also be expressed as the formal determinant

u× v =

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = i ·
∣∣∣∣u2 u3

v2 v3

∣∣∣∣− j ·
∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ k ·
∣∣∣∣u1 u2

v1 v2

∣∣∣∣
where i=(1, 0, 0), j=(0, 1, 0), k=(0, 0, 1).

Example

Find the cross product of the vectors u = (1, 0, 2) and v = (3, 4, 1).
Check that the cross product is perpendicular to the vector u and to the
vector v.

u× v =

∣∣∣∣∣∣
i j k
1 0 2
3 4 1

∣∣∣∣∣∣ =
(∣∣∣∣ 0 2

4 1

∣∣∣∣ , −
∣∣∣∣ 1 2

3 1

∣∣∣∣ ,
∣∣∣∣ 1 0

3 4

∣∣∣∣) = (−8, 5, 4)

To check whether they are perpendicular we calculate their dot product:
(1, 0, 2)·(−8, 5, 4) = −8+0+8=0 Vectors u and u× v are perpendicular.
(3, 4, 1)·(−8, 5, 4)=−24+20+4=0 Vectors v and u× v are perpendicular.

Exercise

Find the cross product of the vectors u = (4,−1, 2) and v = (2, 0, 5).
Check that the cross product is perpendicular to the vector u and to the
vector v.
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Definition

A line through a point A=[a1, a2, a3] in direction of a vector
u=(u1, u2, u3) is defined to be a set of all points X satisfying equation

X = A + tu,

where t is any real number.

Equations

x = a1 + tu1

p : y = a2 + tu2

z = a3 + tu3, t ∈ R.

A

X

p

u

are called parametric equations of the line.

Example

Set parametric equations for a line which passes through the point
A=[3, 4, 1] in direction of the vector u=(2,−2, 1).

x = 3 + 2t
p : y = 4− 2t

z = 1 + t, t ∈ R

Exercise

a) Find the parametric equations for a line p which passes through the
point A = [1, 4,−1] in direction of the vector u = (3, 0, 2).

b) Find the coordinates of any four points the line p is passing through.

c) Find the missing coordinates of points [−2, ∗, ∗], [∗, ∗, 7] and
[∗, 6, ∗] so they lie on the line p.
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Exercise
pz

y
x

12

4

3
A

B
Find the parametric equations
for a line p passing through
points A and B.

Exercise

p

z

y
x

3
7

Find the parametric equations
for a line p passing through
given points.
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Exercise

1 2

p

z

y
x

A

Find the parametric equations
for the line p passing through
the point A and parallel with
z-axis.

Exercise

p

z

y
x

N
M

Find the coordinates of the point M
and the point N lying on the line p
and also in xz-plane and yz-plane, re-
spectively.

x = 8− 2t
p : y = −9 + 3t

z = 5
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Exercise

Find out whether the line p passes through the point A, B or C.

p :
x = −1 + 3r
y = 2− 2r
z = 1 + r

A=[2, 0, 2]
B=[5, 1, 3]
C=[−7, 6,−1]

Exercise

Decide whether there is a line which passes through all tree points
A=[1, 1, 1], B=[4, 3, 5] and C=[7, 5, 9].
If so, write its parametric equations.
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Definition

If there is a one point lying on two lines it is called their intersection or a (point of intersection).

Example

Find the intersection of lines p and q (if there is any).

p :
x = 8− 3t
y = 1− t
z = 3 + 2t

q :
x = 3 + s
y = s
z = 8 + s

Denote intersection point P=[p1, p2, p3]. Since P lies on both lines, its coordinates must satysfied both equations
for some t and some s.

p1 = 8− 3t p1 = 3 + s 8− 3t = 3 + s
p2 = 1− t p2 = s 1− t = s
p3 = 3 + 2t p3 = 8 + s 3 + 2t = 8 + s

We get three linear equations in two unknowns.

−3t− s = −5
−t− s = −1
2t− s = 5

 −3 −1 −5
0 2 −2
0 −5 5

 −→
 −3 −1 −5

0 2 −2
0 0 0


System has a one solution t=2 a s=−1. Lines intersect at one point.

p1 = 8− 3t = 8− 3 · 2 = 2 p1 = 3 + s = 3 + (−1) = 2
p2 = 1− t = 1− 2 = −1 p2 = s = −1
p3 = 3 + 2t = 3 + 2 · 2 = 7 p3 = 8 + s = 8− 1 = 7

Lines p and q do intersect. Their point of intersection is P=[2,−1, 7].
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A
B

p

v

q

p ∩ q = P P

u

intersecting lines
A

B

p

v

q
u

p 6 | q

skew lines

A
Bp

v

q

p ‖ q

u

parallel lines A

B

p ≡ q
v

u

identical lines

Example
Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 2 + t
y = 3 + t
z = 5 + 2t

q :
x = −3 + r
y = 6− r
z = 7− r

2 + t = −3 + r
3 + t = 6− r

5 + 2t = 7− r

t− r = −5
t + r = 3

2t + r = 2

 1 −1 −5
1 1 3
2 1 2

−→
 1 −1 −5

0 1 4
0 0 0


The system has one solution r=4, t=−1.
The lines intersect in one point [1, 2, 3].

Example
Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 1 + t
y = 1− 2t
z = −2 + 3t

q :
x = 2− r
y = 2 + 3r
z = −5− 4r

1 + t = 2− r
1− 2t = 2 + 3r
−2 + 3t = −5− 4r

t + r = 1
−2t− 3r = 1

3t + 4r = −3

 1 1 1
−2 −3 1

3 4 −3

−→
 1 1 1

0 −1 3
0 0 −9


The system has no solution. The lines don’t intersect. Therefore they
are eather parallel or skew. Since their direction vectors (1,−2, 3) and
(−1, 3,−4) don’t have same direction the lines are skewed.

Example
Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 1 + t
y = 1− 2t
z = −2 + 3t

q :
x = 2 + 2r
y = 2− 4r
z = −5 + 6r

1 + t = 2 + 2r
1− 2t = 2− 4r
−2 + 3t = −5 + 6r

t− 2r = 1
−2t + 4r = 1

3t− 6r = −3

 1 −2 1
−2 4 1

3 −6 −3

−→
 1 −2 1

0 0 3
0 0 0


The system has no solution. The lines don’t intersect. Therefore they are
eather parallel or skew. Since their direction vectors (1,−2, 3) and (2,−4, 6)
have the same direction the lines are parallel.

Example
Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 1 + t
y = 1− 2t
z = −2 + 3t

q :
x = 2− 3r
y = −1 + 6r
z = 1− 9r

1 + t = 2− 3r
1− 2t =−1 + 6r
−2 + 3t = 1− 9r

t + 3r = 1
−2t− 6r =−2

3t + 9r = 3

 1 3 1
−2 −6 −2

3 9 3

−→
 1 3 1

0 0 0
0 0 0


The system has infitely meny solutions. The lines have infinitely many
common points. Therefore they are identical.
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Exercise

Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 1 + 2t
y = 7− 6t
z = −2 + 8t

q :
x = −2− s
y = 10 + 3s
z = 1− 4s

Exercise

Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 7 + t
y = −11 + 3t
z = −10 + 3t

q :
x = 5 + 6s
y = 3− 2s
z = 10 + s
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Exercise

Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 1 + t
y = 1− 2t
z = 2 + 2t

q :
x = 2− s
y = −1 + s
z = 1− s

Exercise

Decide whether lines p, q are identical, parallel, skewed or intersecting.

p :
x = 10 + t
y = −7− t
z = 3 + 3t

q :
x = 14− 2s
y = 3 + 2s
z = 15− 6s
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Definition

A plane passing through the point A = [a1, a2, a3] in direction of two
independent vectors
u=(u1, u2, u3) and v=(v1, v2, v3) is defined to be the set of all points X
such that

X = A + tu + sv

for some real numbers t, s.

v
A X

u
α

Vectors u and v are called direction vectors of the plane α.

The equations x = a1 + tu1 + sv1

α : y = a2 + tu2 + sv2

z = a3 + tu3 + sv3 t, s ∈ R.

are called the parametric equations of the plane.
A vector is said to lie in the plane if it is a linear combination of u and v.

Exercise

Find coordinates of the points B, C and D;
A=[2, 3, 1], u=(0, 1, 3), v=(1, 2, 1).

a) B = A + u + v, b) C = A + 2u + v, c) D = A + u + 3v.

Example

Find parametric equations for the plane which passes through the point
[7,−2, 3] in direction of vectors (1, 5, 3) and (−4, 1,−2).

x = 7 + t− 4s
y = −2 + 5t + s
z = 3 + 3t− 2s t, s ∈ R.

Example

Find parametric equations for the plane which passes through
the points [1, 1, 1], [4, 3, 5], [7, 5, 9].
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Exercise

a) Find parametric equations for a plane α which passes through the
point A=[1, 2,−2] in direction of u=(3,−1,−1) a v=(1, 0,−2).

b) Find the coordinates of any four random points lying in the plane α.

c) Find the missing coordinates of points [∗, 0, 0], [0, 0, ∗] of the plane α.

Example

Convert parametric equations of the plane α (from previous exercise)
into one equation by eliminating t and s.

x = 1 + 3t + s
α : y = 2− t

z = −2− t− 2s, t, s ∈ R

Myltiply first equation by two, second by five and add all equations to-
gether.

2x = 2 + 6t + 2s
5y = 10− 5t

z = −2− t− 2s

2x + 5y + z = 10 + 0t + 0s

The result is 2x + 5y + z− 10 = 0

Definition

Equation ax + by + cz + d = 0

is called the general form of the equation of the plane.
Numbers a, b, c must not be all zero.

Example

Check whether point A=[1, 2,−2] lies in α : 2x + 5y + z− 10 = 0.

2 · 1 + 5 · 2 + 1 · (−2)− 10 = 0. Yes, it does.
Exercise

Find the missing coordinates of points [∗, 0, 0], [0, 0, ∗] of the plane
α : 2x + 5y + z− 10 = 0.
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Conclusion form previous:
Plane α passes through the point A in direction of vectors u a v.
A=[1, 2,−2] , u=(3,−1,−1), v=(1, 0,−2).
has general equation α : 2x + 5y + 1z− 10 = 0.

Notice that the vector n = (2, 5, 1) is perpendicular to vectors u and v.

Definition

A vector n is said to be perpendicular to a plane if it is perpendicular
to all vectors that lie in the plane. Any such vector is called a normal
vector of the plane.

A normal vector of the plane α : ax + by + cz + d = 0 is the vector
(a, b, c).

A normal vector of the plane α : 2x + 5y + z− 10=0 is the vector
n=(2, 5, 1) and also any scalar multiple of n: (4, 10, 2), (−2,−5,−1),. . .

α

n
α : ax + by + cz + d = 0

n = (a, b, c)

Exercise

Find a general equation of a plane with a normal vector (−3, 1, 4) and
passing through point [1, 2, 1].

Example

Find the general equation of a plane that goes through the point
A=[1, 2,−2] in direction of vectors u=(3,−1,−1) and v=(1, 0,−2).

The equation we are looking for is in the form ax + by + cz + d = 0, where
(a, b, c) is a normal vector. A normal vector is one that is perpendicular to
u and v, so their vector product u× v is a normal vector.

(a, b, c) = u× v =

(∣∣∣∣−1 −1
0 −2

∣∣∣∣ ,−
∣∣∣∣ 3 −1

1 −2

∣∣∣∣ ,
∣∣∣∣ 3 −1

1 0

∣∣∣∣) = (2, 5, 1)

We know that a = 2, b = 5 and c = 1. To find the number d we use the fact
that the point A lies in the plane. Therefore

2 · (1) + 5 · (2) + (−2) + d = 0
d = −10

A general equation of the plane is

2x + 5y + z− 10 = 0
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Exercise

Find the general equation of the plane that goes through the point

A = [−2, 0, 5] in direction of vectors u=(4, 2,−1) a v=(−1, 1, 2).

Check whether points D=[5, 5, 5] and E=[6, 6, 6] lie in the plane.

Exercise

Find the general equation of the plane that goes through the points

A=[3, 1, 5], B=[4, 2, 7] and C=[5, 3, 9].

Find the coordinates of any four random points lying in the plane.
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Exercise

Z

X

z

yx

Y

α

Find the coordinates of points X, Y and Z
lying in the plane α : 4x + 6y + z− 12 = 0
and on the axes.

Exercise

z

yx
D

α

Find the coordinates of any point D
lying in the plane α : 4x + 6y + z− 12 = 0
and the xy-plane.
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Exercise

3

z

yx

1

5

α

Find a general equation of the plane α.

Exercise

5

2

z

y
x

α

Find a general equation of the plane α.
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Exercise

z

yx

7

α

Find a general equation of the plane α
parallel with the xy-plane.

Exercise

Find a general equation of the plane α perpendicular to the x-axis and
passing through the point Q=[1,−2, 3].
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Exercise

Do points [1, 1, 1], [1, 0, 4], [2, 1, 0] lie in the plane α?
Do they lie in the plane β?

α : x + 3y + z− 5 = 0 β : 2x + 6y + 2z− 10 = 0

Example

Do vectors (1, 5, 9), (6, 4, 3) lie in the plane α : x− 3y + 2z + 2 = 0?
Write few other vectors which do lie in the plane.

α

n

Every vector lying in a plane is perpendicular to a normal vector of the
plane. This can be tested by their dot product.

(1, 5, 9) · (1,−3, 2) 6=0 vector (1,5,9) is not in the plane α

(6, 4, 3) · (1,−3, 2) =0 vector (6,4,3) lies in the plane α

Instead “vector lies in a plane” one can say “vector is parallel with a
plane”. It is the same.

Example

Find the line of intersection between the two planes α, β (if there is any).

α : x− y + 4z + 2 = 0 β : 2x− y + 5z− 2 = 0

Let’s assume that P = [p1, p2, p3] is some common point of both planes.
Since P lies on both planes, its coordinates must satisfy both equations.

p1 − p2 + 4p3 + 2 = 0
2p1 − p2 + 5p3 − 2 = 0

We get a system of two equations with three unknowns.

(
1 −1 4 −2
2 −1 5 2

)
−→
(

1 −1 4 −2
0 1 −3 6

) p1 = 4− t
p2 = 6 + 3t
p3 = t

The system has infinitely many solutions. The two planes have infinitely
many common points. They all lie on the line p.

p :
x = 4− t
y = 6 + 3t
z = t

The line p goes through the point [4, 6, 0] in the direction of the vector
(−1, 3, 1). Verify that both the point and the vector lie in both of the planes.

Note: Taking different steps during elimination might get you a different
looking solution, for example

p :
x = 6− 2s
y = 6s
z = −2 + 2s

These are also equations of the line p.



Worksheets for Mathematics I

93 – Euclidean space E3, plane – plane intersection Řy

α ≡ β

identical planes

α

β

parallel planes

α

β

p

intersecting planes

Example

α : 2x + 6y + 4z + 10 = 0
β : 3x + 9y + 6z + 15 = 0

1. method: Compare equations
If the equation of the plane α is a multiple of the
equation of the plane β, the planes are identical.

2. method: Find common points(
2 6 4 −10
3 9 6 −15

)
−→
(

1 3 2 −5
0 0 0 0

)
x = −5− 2t− 3s

α ≡ β : y = s
z = t

There are many solutions. Since the system has
two free variables, the planes are identical. The
solution corresponds to the parametric equa-
tions of the planes.

Example

α : 2x− 6y + 4z + 10 = 0
β : 3x− 9y + 6z + 10 = 0

1. method: Compare equations
If the equation of the plane α is a multiple of
the equation of the plane β except for the coefi-
cient d, the planes are parallel.

2. method: Find common points(
2 −6 4 −10
3 −9 6 −10

)
−→
(

1 −3 2 −5
0 0 0 −25

)
There is no solution, therefore there are no com-
mon points.
Planes are parallel.

Example

α : 2x + 6y + 4z− 10 = 0
β : 2x + 7y + 6z− 15 = 0

1. method: Compare equations
If the equation of the plane α is not a multiple of
the equation of the plane β, the planes are inter-
secting.

2. method: Find common points(
2 6 4 10
2 7 6 15

)
−→
(

1 3 2 5
0 1 2 5

)
x = −10 + 4t

p : y = 5− 2t
z = t

There are many solutions. They all lie on a line,
the planes are therefore intersecting. The solu-
tion corresponds to the parametric equations of
this line.
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Exercise

Decide whether the planes α and β are identical, intersecting or parallel (but different).

a)
α : x− y + 2z + 2 = 0
β : 3x−3y+6z + 6 = 0

b)
α : x− y + 2z + 2 = 0
β : 5x−5y+10z +3 = 0

c)
α : x− y + 2z + 2 = 0
β : x− 3y + 4z− 4 = 0
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$

a ∩ $=P

P

a

a $

a ∈ $
a

$

a ‖ $

Example

a :
x = 2 + 2t
y = 1− t
z = 5t

$ : 3x− 2y− z− 13 = 0

1. method: Compare direction and normal vectors

(2,−1, 5) · (3,−2,−1) 6= 0 so they are not parallel.

The line cuts through the plane at one single point.

2. method: Find common points
Denote coordinates of their common points
[p1, p2, p3]. They must satisfy both equations

p1 = 2 + 2t
p2 = 1− t
p3 = 5t

3p1 − 2p2 − p3 − 13 = 0

Put them together to get a parametr t of the intersec-
tion.

3(2 + 2t)− 2(1− t)− 5t− 13 = 0
t = 3

One solution. Therefore the line cuts through the
plane at one single point P=[8,−2, 15].

Example

a :
x = 4 + t
y = 3t
z = −1− 3t

$ : 3x− 2y− z− 13 = 0

1. method: Compare direction and normal vectors

(1, 3,−3) · (3,−2,−1) = 0 so they are parallel

Does the point [4, 0,−1] of the line lies in the plane?
3 · 4− 2 · 0 + 1− 13 = 0 Yes.
The line is embeded in the plane.

2. method: Find common points
Denote coordinates of their common points
[p1, p2, p3]. They must satisfy both equations

p1 = 4 + t
p2 = 3t
p3 = −1− 3t

3p1 − 2p2 − p3 − 13 = 0

Put them together to get a parametr t.

3(4 + t)− 2(3t)− (−1− 3t)− 13 = 0
0 = 0

Many soution. Many common points.
The line is embeded in the plane.

Example

a :
x = 2 + 2t
y = 1 + 4t
z = 1− 2t

$ : 3x− 2y− z− 13 = 0

1. method: Compare direction and normal vectors

(1, 3, −3) · (3,−2,−1) = 0 so they are parallel

Does the point [2, 1, 1] of the line lies in the plane?
3 · 2− 2 · 2− 1− 13 6= 0 No.
The line is parallel with the plane but outside it.

2. method: Find common points
Denote coordinates of their common points
[p1, p2, p3]. They must satisfy both equations

p1 = 2 + 2t
p2 = 1 + 4t
p3 = 1− 2t

3p1 − 2p2 − p3 − 13 = 0

Put them together to get a parametr t.

3(2 + 2t)− 2(1 + 4t)− (1− 2t)− 13 = 0
−10 6= 0

No solution, no common points.
The line is parallel with the plane but outside it.
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Exercise

Decide whether the lines a, b, c cut through, are embeded or are parallel with the plane $ : 3x− y + z + 2 = 0.

a :
x = 5− t
y = −1 + 2t
z = −2 + t

b :
x = t
y = 1 + 4t
z = −1 + t

c :
x = 4 + t
y = 2 + t
z = 7− 2t
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Exercise

Decide whether the line a cuts through, is embeded or is parallel with the plane $.

a :
x = −t− 2
y = −2t + 4
z = −2t− 1

$ :
x = −2 + 3s + r
y = 4 + 2s + 2r
z = 1 + 2r
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We begin with a discussion of the two related problems that motivated the
invention of calculus.
Let us look at the relation between the speedometer and the odometer,
which is familiar to every driver. The first one measures velocity v and
the other one the distance s travelled. Notice the difference in units: s is
given in kilometers (or meters) and v in kilometers per hour (or meters per
second). Even though we measure both at the time t, a unit of time enters
directly only the velocity, not the distance.

The relation between v and s.
Can we find v if we know s? How? And vice versa, if we have the record
of the velocity over the time, can we compute the distance traveled? In
other words, can we recover missing information of odometer form the
complete recors of speedometer?

The problem of finding velocity from a record of distance is called differ-
entiation, finding distance traveled from the velocity is called integration.

Example

Constant velocity
Suppose we travel with fixed velocity v = 90 (km per hour). Then s
incerases at this constant rate. After an hour the distance is s = 90
km, after three hours s = 270 and after t hours s = 90t. The distance
incerases linearly with time and its graph is a line with slope 90. The
graph of velocity is a horizontal line.
This simple relation of v, s, t needs just algebra:

s = v · t

Notice that in this example the car starts at full speed and the distance
starts at zero, i.e. it is a brand new car.

1 2 3 4

100

velocity v(t)

time t

Area = 270

1 2 3

90
180
270

distance s(t)

time t (hours)

s = 270

slope = 270/3 = 90

Constant velocity and linearly increasing distance

Conversely, if s increases linearly, v is constant. The division by time gives
the slope. At any point, the ratio s/t is 90. Geometrically, the velocity is
the slope of the distance graph

slope =
change in distance

change in time
=

v · t
t

= v

Now, how do we compute s from v? Let us start with the graph v and
discover the graph of s = v · t. The graph of s is given by the area under
the velocity graph. When v is constant, we got a rectangle with height v
and width t, hence its area is v times t. Finding area is called integration.

• The slope of distance graph gives the velocity v.

• The area under the velocity graph gives the distance s.
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The whole point of calculus is to deal with non-constant velocities.

Example

The car goes forward with velocity v for three hours and then returns
back where it started with the same speed.

More precisely, the velocity during the return is −v, the time needed for
return is also t = 3, the total distance traveled after the trip will be s = 0.

3 6

v

−v

v(t)

t

area 3v

area −3v
3 6

3v

v

s(t)

t

velocity v velocity −v

Velocities v and −v give motion there and back again, ending at s(6) = 0.

We note that

• the total area under the velocity graph is zero.

• Negative velocity causes the distance graph go downward, the car is
moving backward.

• Area below the t axis in the velocity graph is counted as negative.

The number v(t), we say “v of t” is the value of the function v at the
time t.
The time t is the input to the function, the velocity v(t) at that time is
the output.

It is easy to write down a formula for our function:

v(t) =


+v if 0 < t < 3
? if t = 3
−v if 3 < t < 6

This function is discontinuous because of the jump speedometer makes at
t = 3. At that instant of time, velocity is not defined. There is no v(3)! You
may think that it might be zero, but that leads to troubles. We can’t give
slope here.
The principle behind the function s is the same: s(t) is the distance at time
t and instructions change at t = 3:

s(t) =
{

v · t if 0 ≤ t ≤ 3
v(6− t) if 3 ≤ t ≤ 6

At the switching time, the right-hand-side gives two instructions (one on
each line). This would be mistake unless they match: s(3) = 3v. Hence,
the distance function is continuous.
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Exercise

Draw the distance graphs that correspond to the following velocity graphs.

2 4 6

60

f

t 1 2

20

10

f

t 10 20 30

30

20

10

f

t T 2T 3T

1

f

t
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Exercise

Draw the distance graphs that correspond to the following velocity graphs. Start from s = 0 at t = 0 and mark the distance.

1 2 3

30

v

t 2 4 6

30

−30

v

t 1 2 3

40

−40

v

t T 2T 3T

40
20

v

t
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In some way, functions are instructions telling us how to find s at time t.
The instructions can be given in the form of

• explicit formula s = f (t), e.g. s = 2t,

• implicit equation f (x, y) = 0, e.g. x + y− 1 = 0,

• parametric equations x = x(t), y = y(t), with t ∈ I ⊂ R, describing
coordinates of the point in the plane at the time t, e.g.

x(t) = 3 + 3t,
y(t) = 3− 3t, t ∈ 〈0, 1〉.

• table

t 0 1 2 3 4 5 6

s(t) 0 90 180 270 180 90 0

• graph, etc.

In practice, the number f (t) is produced from the number t by reading a
graph or display of a measuring device, plugging into a formula, solving
an equation, or running a computer program.

Definition

The function is a rule that assigns one member of the range to each
member of the domain. Equivalently, we say that a function is a set of
ordered pairs (t, f (t)) with no t appearing more than once.
The domain of the function f is the set D of inputs, D ⊂ R.
The range of the function f is the set I of outputs, I ⊂ R. We also say
that I is image of D, I = f (D).

The input t is mapped to the output s(t), which changes as t changes. All
calculus is about the rate of change. This rate was our function v(t).

Functions are used to build deterministic models, i.e. models which al-
ways produce the same output from a given starting condition or ini-
tial state. Such models are widely used in mathematics, e.g. systems in
chaos theory are deteministic, nevertheless strongly dependent on the ini-
tial conditions, in physics, where the laws described by differential equa-
tion (Newton law, Schrödinger equation, etc.), even though the state of the
system at a given time is often difficult to describe explicitly, or in com-
puter science, e.g. Turing machine is deterministic.



Worksheets for Mathematics I

104 – The velocity changing at an instant 1/2 Řy

There are two central questions leading in opposite directions that cal-
culus was invented to solve:
1) If the velocity is changing, how can we compute the distance travelled?
2) If the graph s(t) of the distance is not a straight line, what is its slope?

The first step is to let the velocity change in the steadiest possible way:

Example

Suppose that v(t) = 2t is the velocity at each time t. Find the distance
s(t).

To describe the situation with our driver example, a physicist would say
that the driver steps on the gas, the spedometer goes steadily up and the
acceleration is constant (it equals 2).
We measure t in seconds and v in meters per second. After 5 seconds the
speed is 10 m/s after 12, 5 seconds the speed is 25 m/s, which is 90 km/h.
The acceleration is clear. Actually, it is the slope of the velocity graph. But
how far has the car gone?

Example

Suppose that s(t) = t2 is the distance traveled by time t. Find the veloc-
ity v(t).

The distance graph of s(t) is a parabola. It starts at zero, the car is new. At
t = 3 the distance is s = 9, at t = 5, the distance is s = 25 and by t = 10, s
reaches 100.
Velocity is distance divided by time, but what happens when the speed is
changing? Dividing s = 100 by t = 10 gives v = 10, this is the average
velocity over the first ten seconds. But how do we find the instantaneous
velocity without looking at the speedometer at the exact instant when t =
10?
The problem is that the distance is not distributed evenly. As the car goes
faster, the graph of t2 gets steeper and more distance is covered in every
following second. We can try an approximation. The average velocity
between t = 10 and t = 11 may be a good approximation to the speed at
the moment t = 10 and averages are easy to find:

average v =
change in s
change in t

=
s(11)− s(10))

11− 10
=

121− 100
1

= 21.

The car covered 21 meters in that second and its average speed was
21 m/s. Since it was still gaining speed, the velocity at the beginning
t = 10 was below 21.
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What is the average geometrically? It is a slope. But not the slope of the
curve. The average velocity is the slope of a straight line joining two point on
the curve. Thus, we pretend the velocity is constant and we are back in the
previous easy case.

The graph of quadratic distance function s(t) = t2 and its velocity.

We can also find the average over a smaller time interval, for example
half-second between t = 10.0 and t = 10.5. We again divide the change in
distance by the change in time:

s(10.5)− s(10.0))
10.5− 10

=
110.25− 100

0.5
= 20.5.

This is closer to the speed at t = 10, but still not exact. The way to find
v(10) is to proceed with reducing the time interval.

Finding the slope between points that are closer and closer on the
curve is the key to the differentail calculus. The “limit” is the slope at a
single point.

We can compute the average velocity between t = 10 and any later time
t = 10 + h by the same algebra:

vav =
(10 + h)2 − 102

h
=

100 + 20h + h2 − 100
h

= 20 + h.

This agrees with our previous calculations: for the time interval from t =
10 to t = 11 we had h = 1 and the average was 20 + h = 21, for the half-
second we had h = 1

2 and the average was 20 + 1
2 = 20.5. Over a milionth

of a second the average would be 20.000 001, which is very close to 20.

We are ready to show that for the distance function s(t) = t2, the velocity
function v(t) = 2t. This is the key computation of calculus: we compute
the distance at t + h, subtract the distance at t and divide by h:

vav =
s(t + h)− s(t)

h
=

(t + h)2 − t2

h
=

t2 + 2th + h2 − t2

h
= 2t + h.

As h approaches zero, the average velocity for the distance function
s(t) = t2 approaches v = 2t.
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Now we can give the formal definition of the derivative. It generalizes the
examples form the previous chapter. We introduce the derivative of the
function f (x) and use the new symbols f ′ and d f /dx for it.

Definition

The derivative f ′(x) or d f /dx is

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

The ratio on the right-hand side resembles the average velocity over a
short time ∆t. The derivative is its limit as the time interval ∆t approaches
zero.
Look carefully at each part: The f (x + ∆x) is the value of f at x + ∆x,
the f (x) is the value at x and the subtraction gives change in value, often
denoted by ∆ f . The derivative is the ratio ∆ f /∆x, change in value divided
by change in argument, in agreement with our previous examples.
The limit of the average velocity is the derivative,

d f
dt

= lim
∆t→0

∆ f
∆t

,

if this limit exists. Behind the innocent word “limit”, there is a whole pro-
cess of approaching. Its understanding requires working with the concept
of infinity and this is why the general theory of limits is not particularly
simple. Here it is sufficient to understand it within the scope presented
in the previous chapter. As it is not that hard either, we work on it fur-
ther it in the next chapter, where we also formulate an efficient method for
computation of limits, l’Hôpital rule.
The left-hand sides f ′(t) and d f /dt are instantaneous speed. They give
the slope at the instant t.

The notation hides two things worth mentioning.

First, the time step can be negative. We compute average ∆ f /∆t over a
time interval before the time t, instead of after. This ratio also approaches
d f /dt.
Second, the derivative might not exist. The averages ∆ f /∆t might not
approach a limit (the same one for the time running forwards and back-
wards). In that case f ′(t) is not defined.
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Example

Review the calculation of the instant velocity for the distance function
f (t) = t2:

∆ f
∆t

=
f (t + ∆t)− f (t)

∆t

=
t2 + 2t∆t + (∆t)2 − t2

∆t

=
2t∆t + (∆t)2

∆t
= 2t + ∆t

Note that we take these steps before ∆t goes to zero. If we set ∆t → 0
too early, we learn nothing, as the ratio becomes 0/0, an expression which
does not have meaning so far. The theory of limits will later allow us to
understand it.
The numbers ∆ f and ∆t must approach zero together, not separately.
Then, their ratio 2t + ∆t gives the correct average speed.

Example

Constant velocity v = 3 up to time t = 5, then stop.

For t ∈ (0, 5) we have f ′(t) = 3 and thus f (t) = 3t. After stopping time
the distance remains fixed at f (t) = 15 and its graph is flat beyond the
time t = 5. Hence, f (t + ∆t) = f (t) and ∆ f = 0. This means that

Theorem

The derivative of a constant function is zero.

Indeed, it holds for t > 5:

f ′(t) = lim
∆t→0

f (t + ∆t)− f (t)
∆t

= lim
∆t→0

0
∆t

= 0.

The derivative is not defined for t = 5, as the velocity falls suddenly from 3
to zero. The ratio ∆ f /∆t depends at this moment on whether ∆t is positive
or negative.

The graphs for f ′(t) and f (t) for the instant stop at t = 5.
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So far, our variable was the time t. In many textbooks, the general math-
ematical unknown x is used. Nevertheless, the name of the variable does
not play any role. In the next example, we use the price p as variable.
Similarly, f is not the only possibility. It can’t be used for every function.
The letter f is useful, as it stands for the word function, but we are free to
choose y(x) or, in our case, d(p).

Example

Consider the demand function d(t) = 1/p. The meaning is clear, in-
creasing price p reduces the demand d(p).

How quickly does 1/p change when p changes? It will be clear when we
find the derivative of 1/p for all p.
First, take ∆d and simplify to

∆d =
1

p + ∆p
− 1

p
=

p− (p + ∆p)
p(p + ∆p)

=
−∆p

p(p + ∆p)
.

Dividing by ∆p and letting ∆p→ 0 gives

∆d
∆p

=

−∆p
p(p+∆p)

∆p
=

−1
p(p + ∆p)

d′(p) = lim
∆p→0

−1
p(p + ∆p)

=
−1

p2 + p∆p
=
−1
p2

Check the algebra for p = 2 and ∆p = 1. The demand 1/p drops from 1
2 to

1
3 at p + ∆p. The difference of demand is ∆d = −1/6, which agrees with
−1/(2 · 3) in the first line. As the steps ∆p and ∆d get smaller, their ratio
approaches −1/(22) = −1/4.

The slope is also a function. The whole calculus is about two functions,
y = f (x) and y′ = d f /dx.

The derivative of the function y = 1/x is(
1
x

)′
=
−1
x2
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We have already computed the derivatives of y = x2 and y = 1/x = x−1.
Now, we show that the derivatives of all functions of the form y = xn

follow the same pattern.

Theorem

The derivative of the nth power is given by

(xn)′ = n · xn−1, for all n ∈ R \ {0}

The exception n = 0 is the constant function y = x0 = 1. Its derivative, as
we’ve already discovered, is zero.

Example

Using the previous theorem, compute the derivatives of the quadratic
function x2, the linear rational function 1/x and the square root

√
x.

(x2)′ = 2x1 = 2x,(
1
x

)′
= (−1) · x−2 = − 1

x2(√
x
)′

=
(

x
1
2

)′
=

1
2
· x−1/2 =

1
2
√

x
.

Exercise

Compute the derivatives:
(

x5
)′

,
(

1
p3

)′
,
(

3√t2
)′

,
(

1
5
√

r9

)′
.

Remark

The pattern follows from the definition of the derivative and binomial
expansion of (x + h)n = xn + nxn−1h + · · · + nxhn−1 + hn. Every el-
ement is of the form (n

i )xn−ihi for i ∈ {0, . . . , n} and the coefficients
follow from the Pascal triangle.
Due to the standard procedure from the definition, the only elements
that matter are the ones with exactly one h.

Exercise

Work out the cases y = x3 and y = x4, i.e. n = 3, 4, in detail (from the
definition).
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A huge number of functions are linear combinations like f (x) = x2 + x
or f (x) = x2 − x, or f (x) = 5x2 or f (x) = x/2. In general also all of it
at once: f (x) = 5x2 − 1

2 x +
√

3. You’ve met such linear combinations in
detail in the chapter on linear algebra.
If we need to add or subtract or multiply by 5 or divide by 2, we can do the
same with the derivatives.

Theorem

The derivative is linear, i.e., the following holds:

1. (c · f (x))′ = c · f ′(x) for any constant c ∈ R.

2. ( f (x)± g(x))′ = f ′(x)± g′(x).

Example

We show the rule for a polynomial, in our case the quadratic function
y = 3x2 − 4x + 5, but the rules allow any combination of f and g.

(3x2 − 4x + 5)′ = 3(x2)′ − 4(x)′ + (5)′ = 3 · (2x)− 4 · 1 + 0 = 6x− 4.

Exercise

Compute the derivatives:(
4x5 − 3

x6

)′
,

(
3√8 · x2 +

10
5
√

x9
− 3
√

4
)′

.
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We want to compute the derivative of multiplication of two functions. It is
different from multiplication of function by a constant, as we can see from
the following baby example:

(x2 · x)′ ?
= (x2)′ · x′ = 2x · 1 = 2x,

(x2 · x)′ = (x2+1)′ = (x3)′ = 3x2.

It follows that ( f (x) · g(x))′ 6= f ′(x) · g′(x).
The correct formula is named after one of the inventors of the calculus
Gottfried Wilhelm Leibniz (1646–1716).

Theorem (Leibniz product rule)

For any differetiable functions f and g the following holds:

( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x).

Example

Compute the derivative of the function y = (x2 + 4x− 6)
√

x

y′ = (x2 + 4x− 6)′
√

x + (x2 + 4x− 6)(
√

x)′

= (2x + 4)
√

x + (x2 + 4x− 6) · 1
2
√

x
.

The formula for the quotient of two functions contains an expression sim-
ilar to Leibniz rule in the numerator:

Theorem (Quotient rule)

For any differetiable functions f and g the following holds:(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 .

Exercise

Compute the derivative of

y =
(
√

x− 3)2

x
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Example

If the function u(x) has slope du/dx, determine the slope of the com-
posed function f (x) = (u(x))2.

The first observation, e.g. with u(x) = x2, gives the function f (x) = x4,
for which (du/dx)2 = (2x)2. On the other hand f ′ = (x4)′ = 4x3. Hence,
the derivative of u2 is not (du/dx)2.
To get the correct answer, we have to start with ∆ f = f (x + ∆x)− f (x):

∆ f = (u(x + ∆x))2 − (u(x))2 = [u(x + ∆x) + u(x)] · [u(x + ∆x)− u(x)]

due to factorization a2 − b2 = (a + b)(a− b). Notice we don’t have (∆u)2.
Now we divide the ∆ f , the change in u2, by ∆x

∆ f
∆x

= [u(x + ∆x) + u(x)] · [u(x + ∆x)− u(x)]
∆x

,

where the second term is just du/dx. Taking the limit we get

f ′(x) = lim
∆x→0

∆ f
∆x

= 2u(x) · du
dx

.

Example

Compute the derivative of the function f (x) = (
√

x− 1)2.

In agreement with the previous calculation we get:

f ′(x) = 2 · (
√

x− 1) · 1
2
√

x
= 1− 1√

x
.

Let us check the answer by computing the derivative without the rule.
Factorig the square we get (

√
x− 1)2 = x− 2

√
x + 1. In this form we can

compute using the rule for nth power and confirm the result.

Notice the the result is the product of the derivative of “outer” function,
the second power, and the inner function u. Let us state the rule in the
general form:

Theorem (Chain rule)

For any differetiable functions f and g it holds:

( f (g(x)))′ = f ′ (g(x)) · g′(x)

Exercise

Compute the derivative of the composed functions y = (x3 − 1)4 and
y =

√
8− 4x− 2x2.
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We state now the rules for the derivatives of exponential functions y = ax

and logarithmic functions y = logb(x), where a and b are called base and
both a, b ∈ (0, 1) ∪ (1, ∞). For the same base, the functions y = ax and
y = loga(x) are mutually inverse, so it holds

aloga x = x and loga(ax) = x.

The rules for the derivative of the functions y = ex and y = ln(x), with the
Euler number e = 2.71 . . . as a base, are particularly simple.

Theorem

For the exponential function y = ex it holds

(ex)′ = (ex) .

For a general exponential function y = ax a factor should be added. Let us
show its value using the formula of the inverse:

(ax)′ =
(

eln(ax)
)′

=
(

ex·(ln a)
)′

= e(ln a)·x · ((ln a) · x)′ = ax · (ln a)

For the composed function y = eu(x), with an inner function u(x), the
chain rule gives: (

eu(x)
)′

=
(

eu(x)
)
· u′(x).

Example

Compute the derivative of the functions y = e
√

x and y = 23t+1.

(
e
√

x
)′

= e
√

x · 1
2
√

x(
23t+1

)′
= 23t+1 · (ln 2) · 3

Theorem

For the logarithmic function y = ln(x) it holds

(ln(x))′ =
1
x

Similarly as above, for a general logarithmic function y = loga(x) a factor
should be added:

(loga x)′ =
(

ln x
ln a

)′
=

1
ln a
· (ln x)′ =

1
ln a
· 1

x

For the composed function y = ln(u(x)), with an inner function u(x), the
chain rule gives:

(ln(u(x)))′ =
1

u(x)
· u′(x).

Example

Compute the derivative of the functions y = ln(x2 + 4x + 5) and y =
log2(3x).

(
ln(x2 + 4x + 5)

)′
=

1
x2 + 4x + 5

· (2x + 4)

(log2(3x))′ =
1

ln 2
· 1

3x
· 3 =

1
x · ln 2
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The sine and cosine functions are important for description of oscillations.
It is a beautiful fact that for y = sin(x) is y′ = cos(x). We derive the
derivative by the standard limit technique:

dy
dx

= lim
h→0

∆y
∆x

= lim
h→0

sin(x + h)− sin(x)
h

.

This looks harder than xn, as we need so called addition formula

sin(x + h) = sin x cos h + cos x sin h.

Since we are going to look on what happens for h → 0, we factor out the
sin(x) and cos(x) and get

lim
h→0

∆y
∆x

= sin(x)
(

lim
h→0

cos h− 1
h

)
+ cos(x)

(
lim
h→0

sin h
h

)
.

It is no longer easy to divide by h. We proceed with showing the value of
the two limits without proof, which we provide in the next chapter

lim
h→0

cos h− 1
h

= 0 and lim
h→0

sin h
h

= 1.

Therefore, we arrive at

dy
dx

= sin(x) · 0 + cos(x) · 1 = cos x.

Theorem

For the derivatives of sine and cosine functions it holds:

(sin(x))′ = cos(x) (cos(x))′ = − sin(x)

Note the sign in the second formula, which stems from the addition for-
mula for the cosine, cos(x + h) = cos x cos h− sin x sin h.

Example

Compute the derivatives of

a) y = 4 + sin(2t + 1)

b) y = 3 cos
(

t
2
+

π

6

) c) y = tan2(5ω)

We first note that

(sin(u(x)))′ = cos(u(x)) · u′(x).

Therefore, it holds

a) (4 + sin(2t + 1))′ = cos(2t + 1) · 2,

b)
(

3 cos
(

t
2
+

π

6

))′
= 3 ·

(
− sin

(
t
2
+

π

6

))
· 1

2
.

To solve c) we first deduce the formula for the derivative of the tangent
function from the quotient rule:

(tan(x))′ =
(

sin(x)
cos(x)

)′
=

cos(x) · cos(x)− sin(x)(− sin(x))
cos2(x)

=
1

cos2(x)
.

Therefore, (
tan2(5ω)

)′
= 2 · tan(5ω) · 1

cos2(5ω)
· 5.

Exercise

Compute the derivative of y = cot(2x).
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For the sake of completeness we state the formulas for the derivatives of
the inverse trigonometric functions (occasionally also called arcus func-
tions or cyclometric functions.

Theorem

The derivatives of the inverse trigonometric functions it holds:

(arcsin(x))′ =
1√

1− x2

(arccos(x))′ = − 1√
1− x2

(arctan(x))′ =
1

1 + x2

Example

Compute the derivatives of

a) y = arcsin
√

x b) y = arctan
1
x

As it holds

(arcsin( f (x)))′ =
1√

1− ( f (x))2
· f ′(x),

(arctan( f (x)))′ =
1

1 + ( f (x))2 · f ′(x),

we get:

a)
(
arcsin(

√
x)
)′
=

1√
1− (

√
x)2
· 1

2
√

x
=

1
2
√

x
√

1− x
,

a)
(

arctan
(

1
x

))′
=

1
1 + ( 1

x )
2
·
(
−1
x2

)
=
−1

x2 + 1
.
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(c · f (x))′ = c · f ′(x) for any constant c ∈ R,

( f (x)± g(x))′ = f ′(x)± g′(x),

( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x),

(
f (x)
g(x)

)′
=

f ′(x) · g(x)− f (x) · g′(x)
(g(x))2 ,

( f (g(x)))′ = f ′ (g(x)) · g′(x).

(xn)′ = n · xn−1, for all n ∈ R \ {0},

(ex)′ = (ex) ,

(ln(x))′ =
1
x

,

(sin(x))′ = cos(x),

(cos(x))′ = − sin(x),

(arcsin(x))′ =
1√

1− x2

(arccos(x))′ = − 1√
1− x2

(arctan(x))′ =
1

1 + x2
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Exercise

Compute the derivatives of the following functions:

a) y = 2 · x2 ·
√

x3
+

3√
8x4 − 1

2x3 +

√
2

2
, for x0 = 1

b) MI I(x) = F · (a + x)− q2 ·
a
2
·
(

3
4

a + x
)
− q2 · x ·

x
2

, for x0 = 2

c) y =
tan x

sin(2x)
, for x0 = π

3

d) y = cos(1)− 3 · cos2
(x

3
− π

6

)
, for x0 = 0
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Exercise

Compute the derivatives of the following functions with respect to their independent variables:

a) N(y) =

√
β + x
1− y

, for y0 = 0

b) F(u) =
arcsin(1− 4u)

2
, for u0 = 1

4

c) G(z) = ln
4

2z− 4
− ln 8, for z0 = 3

d) A(t) = A0 + 3e−2αt+t0 , for t0 = 0

e) V(r) =

√
πpr4

8η`
, for r0 = 1

2
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Jan Kotůlek
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If we focus our attention near a single point, on a very short range, a curve
looks straight. Looking through microscope, or zooming in a computer
program, the graph becomes nearly linear.

Example

Consider the function f : y = x3 + x2 − 2x − 1. At the point x0 = −1,
the value of f is y0 = f (−1) = 1, which gives the point of tangency
T = [−1, 1]. The slope of f is given by dy/dx = 3x2 + 2x − 2. At
x = −1 the slope is f ′(−1) = 3 · (−1)2 + 2 · (−1)− 2 = −1.
The equation of the tangent line is y− 1 = (−1)(x− (−1)), that is

y = −x.

(a) Graph of the function f : y =
x3 + x2 − 2x − 1 and its tangent at
x = −1.

(b) The previous situation zoomed
to the interval I = 〈−1, 04;−0, 94〉.

A straight line is determined by two of its points or by its point and slope.
That is the situation with the tangent line:

1. The equation of a line has the form y = kx + q.

2. The number k is the slope of the line, as dy/dx = k.

3. The number q adjusts the line to go through the required point of
tangency.

The curve and its tangent line have the same slope at the point of tangency.

Definition

Equation of the tangent line t to f at the point T:

t : y− f (x0) = kt · (x− x0)

for T = [x0, f (x0)] and kt = f ′(x0).
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Exercise

Write down the equation for the tangent line t to the graph of the following function:

a) y =
1

(2− ex)2

b) y = 2x · cos
(x

2

)
+ 1

c) y = esin( x
2 )

d) y =
√

5− e−4x

e) y = cos
(

3x
1− 2x

)
f) y =

√
1 + 2 ln (x2 + x + 1)

at the point Py, intersection point with the coordinate axis y, i.e. the line x = 0.
Find the slope of t.

Hints

Equation of the tangent line t to f
at the point T:
t : y− f (x0) = kt · (x− x0)
for T = [x0, f (x0)] and kt = f ′(x0)
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Exercise

Write down the equations for the tangent lines ti to the graph of the following function:

a) y =
x + 1
x2 + 1

b) y =
√

x3 + 1

c) y =
ln
(
x2 − 3

)
x

d) y = ln
(

x2 − x + 1
)

e) y = 1− ex2+2x−8

f) y = x · arctan(x− 2)

at intersection points Pxi with the coordinate axis x, i.e. the line y = 0.
Find the slopes of ti.

Hints

Equation of the tangent line t to f
at the point T:
t : y− f (x0) = kt · (x− x0)
for T = [x0, f (x0)] and kt = f ′(x0)
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There is another important line, closely connected to the tangent line. It is
perpendicular to the tangent and to the curve and it passes through the
same point of tangency. It is called normal line, usually denoted by n.
Let us discuss its slope.
According to the rule that slopes of perpendicular lines multiply to give
−1,the following holds:

Theorem

If the tangent has slope m, the normal line has slope −1/m.

Light rays follow the direction of the normal line.
Wood fires move perpendicular to the fire line.

Example

Determine the tangent and normal line to the curve y = x3 − 2 at the
point of tangency [2; 6].

The slope of the tangent line is

kt = y′(2) =
(

3x2
)∣∣∣

x=2
= 12.

Hence, the point-slope equation of the tangent line is

t : y− 6 = 12(x− 2).

As kn = −1/kt the point-slope equation of the normal line is

n : y− 6 =
−1
12

(x− 2).
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In the previous section we defined a linear approximation to estimate val-
ues of a function f at a neighborhood of the point a with known value. It
can be used efficiently if

• we know the value f (a)

• we can easily compute the value of the first derivative of f at the
point a.

However, this is not always the case. For example, a linear approximation
of the Euler number e .

= 2.71 . . . , i.e. the value of the function y = ex at
the point a = 1, is not sufficient for precise calculations.
We can’t use the tangent line at the point a = 1, as the value of the function
and the derivative is just e.
Hence, we are forced to use the tangent approximation at a = 0, which
gives us

e1 ≈ e0 + e0(x− 0) = 1 + x = 2,

which is far from satisfactory.
It is a straightforward idea to approximate the value with a quadratic func-
tion, also with the help of the second derivative, which gives us:

e ≈ e0 + e0(x− 0) +
e0

2!
(x− 0)2 =

(
1 + x +

x2

2

)
x=1

= 2.5.

The higher degree polynomials give us required accuracy:

e ≈
(

1 + x +
x2

2
+

x3

3!

)
x=1

= 2 + 2
3 = 2.6̄,

≈
(

1 + x +
x2

2
+

x3

3!
+

x4

4!

)
x=1

= 2 + 17
24 = 2.7083̄,

≈
(

1 + x +
x2

2
+

x3

3!
+

x4

4!
+

x5

5!

)
x=1

= 2 + 43
60 = 2.716̄,

The polynomial obtained in this way is called Taylor polynomial.
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Definition

The polynomial of the degree n ∈N of the form

Tn(x) = f (a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n

is called the Taylor polynomial of the order n for the function f centred
at the point a.

We can use the Taylor polynomial to approximate the values of f at
a neighborhood of a if

• we know the value f (x0),

• we can easily compute the first n derivatives of the function f at the
point a.

Remark

For the centre at the origin, a = 0, the polynomial is also called Maclau-
rin polynomial and denoted Mn(x).
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Example

For the function f : y = cos(2x) write down the formula for the Maclau-
rin polynomial of the order 4.

The formula for the Maclaurin polynomial is easily obtained from Tn(x)
by substituting a = 0:

M4(x) = f (0) + f ′(0) · x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 +
f (4)(0)

4!
x4

We start with computing the first four derivatives of f (x) = cos(2x) and
moreover we immediately compute their values at a = 0. We get:

f (x) = cos(2x) f (0) = cos(2 · 0) = 1

f ′(x) = (−2) · sin(2x) f ′(0) = (−2) · sin(2 · 0) = 0

f ′′(x) = (−4) · cos(2x) f ′′(0) = (−4) · cos(2 · 0) = −4

f ′′′(x) = 8 · sin(2x) f ′′′(0) = 8 · sin(2 · 0) = 0

f (4)(x) = 16 · cos(2x) f (4)(0) = 16 · cos(2 · 0) = 16

Substituting these values into the formula we get:

T4(x) = 1 + 0 · x +
−4
2!

x2 +
0
3!

x3 +
16
4!

x4 = 1− 2x2 +
2
3

x4.

The Maclaurin polynomial of an even function, i.e. also f (x) = cos(2x),
contains the even powers only, therefore it is an even function:

The function f : y = cos(2x) and its Maclaurin polynomials of degree
n = 2 and n = 4.
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We are going to solve the following problem:

Find a polynomial that approximates the given function f in the neigh-
bourhood of the point x ∈ D( f ) with the smallest possible error.

Theorem (Taylor)

Let f be a function with continuous derivatives up to the order n + 1
in some neighborhood N(a) of the point a ∈ D( f ). Then the following
holds

f (x) = Tn(x) + Rn+1(x),

on N(a), with the remainder term Rn+1(x) of the form

Rn+1(x) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1,

where ξ ∈ N(a).

From the remainder term we can estimate the error caused by taking Tn(x)
instead of f (x).

Example

Estimate the error of taking e ≈ T5(1) = 2.716̄.

Using the Taylor theorem, we compute the value of the remainder:

R6(1) =
f (6)(ξ)

6!
(x)6 =

eξ

6!
16 ≤ 2.72

6!
≤ 0.0038 = O(10−3).

The first inequality follows from the fact that ξ ∈ (0, 1) and due to monoto-
nicity of y = ex we can majorize the error by taking ξ = 1, i.e. f (6)(ξ) = e1.
The second inequality results just from rounding up.

The efficiency of the approximation depends heavily on the magnitude of
the factors in the remainder term. The error is “small” if

• (x− a) is small, i.e. x is close to a,

• n! is large, i.e. the order n is large,

• | f (n+1)(x)| is numerically small in N(a).

However, the form of the remainder term enables us to compute the error,
or at least its order of magnitude.
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Example

Estimate the value of sin(1
2) correctly up to 5 decimal places.

We take y = sin(x) as the function for our approximation. To show the
importance of (x − a) being small we compute, for comparison reasons,
its Maclaurin polynominal and Taylor polynomial at a = π

6 .
Let us compute the first five derivatives of sin(x) and their values at a =
0, π

6 . We get:

f (x) = sin(x) f (0) = 0 f (π
6 ) =

1
2

f ′(x) = cos(x) f ′(0) = 1 f ′(π
6 ) =

√
3

2

f ′′(x) = − sin(x) f ′′(0) = 0 f ′′(π
6 ) = −

1
2

f ′′′(x) = − cos(x) f ′′′(0) = −1 f ′′′(π
6 ) = −

√
3

2

f (4)(x) = sin(x) f (4)(0) = 0 f (4)(π
6 ) =

1
2

f (5)(x) = cos(x) f (5)(0) = 1 f (5)(π
6 ) =

√
3

2

Substituting these values into the Maclaurin and Taylor formula we get:

M5(x) = 0 + 1 · x +
0
2!

x2 − 1
3!

x3 +
0
4!

x4 +
1
5!

x5

= x− 1
6

x3 +
1

120
x5.

T5(x) =
1
2
+

√
3

2
·
(

x− π

6

)
− 1

4

(
x− π

6

)2
−
√

3
12

(
x− π

6

)3
+

+
1

48

(
x− π

6

)4
+

√
3

240

(
x− π

6

)5
.

Let us start with the Maclaurin expansion. Its value at x = 1
2 is

T5

(
1
2

)
=

1
2
− 1

48
+

1
3840

=
1841
3840

= 0.4794 . . .

and the error, estimated using the formula for the remainder,

R6

(
1
2

)
=
| − sin(ξ)|

(6)!

(
1
2

)6

≤
| sin π

6 |
720

· 1
64

.
= 0.00001085 . . . = O(10−5).

Hence, we have achieved the desired precision. Note that the inequality
follows by an argument analogous to the previous example. For π

6 > 1
2 the

value sin π
6 > sin(ξ) for any ξ ∈ (0, 1

2) due to the monotonicity of sin(x)
on the interval (0, π

6 ).

Before we proceed with the Taylor formula at x = 1
2 , let us note that we

need the values of π and
√

3 (at least with the required precision) in order
to use the Taylor formula. Anyway, we just estimate the errors from the
remainder:

R4

(
1
2

)
=
| − sin(ξ)|

(4)!

(
1
2
− π

6

)4

≤
1
2

48
·
(

3− π

6

)4

= O(10−6),

R6

(
1
2

)
=
| − sin(ξ)|

(6)!

(
1
2
− π

6

)6

≤
1
2

720
·
(

3− π

6

)6

= O(10−9).

It is clear that due to the fact that (x− a) is smaller the required precision
is obtained much more quickly.
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Example

Estimate the value of ln(2) correctly up to 3 decimal places.

We take y = ln(x) as the function for our approximation and compute its Taylor polynomial at a = 1.
Let us compute the first five derivatives of ln(x) and their values at a = 1. We get:

f (x) = ln(x) f (1) = 0

f ′(x) =
1
x

f ′(1) = 1

f ′′(x) = − 1
x2 f ′′(1) = −1

f ′′′(x) =
2
x3 f ′′′(1) = 2

f (4)(x) = − 6
x4 f (4)(1) = −6

f (5)(x) =
24
x5 f (5)(1) = 24

Substituting these values into the Taylor formula we get:

T5(x) = 0 + 1 · (x− 1) +
−1
2!

(x− 1)2 +
2
3!
(x− 1)3 +

−6
4!

(x− 1)4 +
24
5!
(x− 1)5

= (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − 1

4
(x− 1)4 +

1
5
(x− 1)5

and its value for x = 2 is
T5(2) = 1− 1

2
+

1
3
− 1

4
+

1
5
=

47
60

= 0.783̄,

which differs from the correct value ln(2) ≈ 0.6931 by 0.09. It is easy to see from the Taylor expansion that
the contribution of the n-th term is ± 1

n . Hence, the result will be correct up to three decimal places only for
n = 1000. This result should make us aware of the limits of applicability of the Taylor theorem.
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Exercise

Write down the Maclaurin polynomial of the order 4 for the function

a) f : y = x2ex,

b) g : y = ex · cos(x).

Hints

Maclaurin polynomial is the Taylor polynomial at the point a = 0:

M4(x) = f (0) + f ′(0) · x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 +
f (4)(0)

4!
x4
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Exercise

Estimate the values of

a) sin(1◦)

b) sin(1)

c) tan(1)

d) arctan(1)

correctly up to 3 decimal places.

Hints

Taylor polynomial of the order n at the point a:

Tn(x) = f (a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n

Error:

Rn+1(x) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1
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Which x makes f (x) as large as possible? Where is the smallest f (x)?
Without calculus, we would have been forced to compute the values of
f (x) and compare them.

Definition

We say that the function f has a local maximum at the point x0 ∈ D( f )
if there exists a punctured neighborhood N(x0) of the point x0 such that

f (x) < f (x0) for all x ∈ N(x0).

Similarly, the function f has a local minimum at the point x0 ∈ D( f ) if

f (x) > f (x0) for all x ∈ N(x0)

The results would be unsatisfactory. Thanks to calculus, we can obtain the
necessary information from d f /dx.

How do you identify maximum or minimum?
Typically, the slope is zero. If d f /dx exists, it must be zero. The tangent
line is horizontal. The graph changes from increasing to decreasing.
The slope changes from positive to negative. This turning point of f ′ is
called a stationary point.

It is also possible that the graph has a corner, and thus no derivative.
These points are called rough points.

Last but not least we should check the endpoints of the domain.

We summarize the situation as follows:

Theorem (Fermat’s theorem)

If f is differentiable at x0 ∈ (a, b), and f ′(x0) 6= 0, then x0 is not a local
extremum of f .

Fermat’s theorem gives us a necessary condition for the existence of a lo-
cal extremum. As a contrapositive statement, it allows us to rule out the
points, where there is no extremum. The remaining points are co called
critical points, suspected of the existence of an extremum. They are of the
following three types:

a) stationary points, where d f /dx = 0,

b) rough points, where d f /dx does not exist,

c) endpoints of the domain.

(a) Stationary point x =
0 of the function y =
x2 + 1.

(b) Rough point x =
1 of the function y =
|x− 1|.

(c) Endpoint x = 3 of
the function y = 2 +√

3− x.

For the most common case of the stationary points there is an easy-to-
check sufficient condition for the existence of a local extremum.

Theorem (Second derivative test)

If f ′(x0) = 0 and f ′′(x0) > 0, then the function f has a local minimum
at the point x0.

If f ′(x0) = 0 and f ′′(x0) < 0, then the function f has a local maximum
at the point x0.
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To find a maximum or minimum, we just find critical points of f . We
solve the equation f ′(x) = 0 and then check the rough points, where f ′(x)
doesn’t exist, and endpoints. The idea is clear, but to be honest, that is not
where the problem starts.

In reality, the first (and often the hardest) step is to choose the unknown
variable, which should be minimized, and find the function describing
its behaviour. We and only we ourselves decide what will be x and how
would f (x) look like. The equation d f /dx = 0 comes out by a standard
procedure, often easily with the help of computer. On the other hand no
computer so far is able to analyse the situation and propose the correct
form of f .

The heart of this subject is in word problems. The procedure of solving
the problem can be divided into steps:

1. Find (propose) the quantity x to be minimized or maximized.

2. Express the quantity x as a function f (x).

3. Compute f ′(x) and solve f ′(x) = 0.

4. Check all critical points for fmin and fmax.
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Example

Barrel problem.
The army is looking for a big amount of 500 litre barrels for fuel. Due
to the shortage of the metal plates, you should propose a shape of the
barrels (the radius r and the height h) spending the least of the worthy
material.

The volume of the barrel is obtained from the formula for the cylinder

V = πr2h = 500 dm3.

The surface of the cylindrical barrel consists of two circles (the bottom and
the top) and the rectangular body. Its area A is their sum:

A = 2(πr2) + 2πrh.

Surface area of the barrel consisting of two circles and a rectangle

The function A should be made minimal. However, it depends on the two
unknowns r and h and we need to minimize function of one variable only.
The two variables are connected through the formula for V, which gives
us the possibility of expressing the height h in terms of r. Indeed,

h =
500
πr2 .

In this way we obtain the formula for A as a function of one variable r:

A(r) = 2(πr2) + 2πr
500
πr2 = 2(πr2) +

1000
r

,

with the domain D(A) = (0, ∞).
The rest is pretty standard. To find the minimum of the function A(r) we
first compute the derivative

dA
dr

= 4πr + 1000 · −1
r2

and use the Fermat theorem dA/dr = 0 to compute the stationary points.
This equation has unique solution

r0 =
3

√
1000
4π

.
= 4.301 dm.

We can check that this is the minimum using the second derivative test.
Indeed,

d2A
dr2 = 4π +

2000
r3 > 0.

Remark

Notice that h = 2r, which means that height is equal to the diameter of
the barrel. This is another manifestation of a symmetry so often seen in
the minimization problems.
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Exercise

Drainage canal.
The company building a drainage canals should dredge a semicircle thalwegs of radius 2 m. The canals
should be concreted into the form of a trapezoid with the bottom parallel to the surface, see figure below.
Find the shape of the trapezoid so that is allows maximal possible streaming (in that case the trapezoid has
maximal area).

Sectional view of the drainage canal is as follows:

Hints

Express the area of the trapezoid
in terms of θ.
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Exercise

Baywatch.
You are standing near the side of a large wading pool of uniform depth when you see a child in trouble.
You can run at a speed v1 = 7.1 m/s on land and swim at the speed v2 = 1.6 m/s in the water. Your
perpendicular distance from the side of the pool is a, the child’s perpendicular distance is b, and the distance
along the side of the pool between the closest point to you and the closest point to the child is c (see the
figure below). Without stopping to do any calculus, you instinctively choose the quickest route (shown in
the figure) and save the child. Our purpose is to derive a relation between the angle θ1 your path makes with
the perpendicular to the side of the pool when you’re on land, and the angle θ2 your path makes with the
perpendicular when you’re in the water. To do this, let x be the distance between the closest point to you at
the side of the pool and the point where you enter the water. Write the total time you run (on land and in the
water) in terms of x and find its minimum.

Hints

The result is called “Snell’s law” or
the “law of refraction”.
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Exercise

Fencing a pasturage.
A rancher needs to fence a rectangular pasturage area next to a straight
river, using 1200 m of fencing. The side next to the river will not be
fenced, to allow the cattle drinking and freshening up in the river. Ad-
vice the rancher the dimensions of the rectagnle to maximize the area of
the pasturage. What is the maximum area?

Exercise

Running a hotel.
A new 120-room hotel to be opened in Prague is setting up its prices.
The manager knows that they will rent all of its rooms if they charge
¤50 per room and for each ¤2 increase per room, three fewer rooms
will be rented per night. What rent per room would maximize the profit
per night?
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Exercise

Cutting a beam.
The strength of a rectangular beam is given by S = ν ·w · d2, with width
w and depth d. Find the dimensions of the strongest beam that can be
cut from a cylindrical log of larch wood (ν = 0.35) of radius r = 30 cm.

Exercise

Shipping a parcel to the USA.
The U.S. post office will accept a box for shipment only if the sum of the
length and girth (distance around) is at most 274 cm. Find the dimen-
sions of the largest acceptable box with square front and back.
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Suppose that d f /dx is positive at a point x0. Then the tangent line slopes
upward. Therefore it is increasing (as a linear function) and the function
f (x) itself is also increasing at the point x0.

Theorem

If f ′(x0) > 0, then the function f is strictly increasing at the point x0.

If f ′(x0) < 0, then the function f is strictly decreasing at the point x0.

This “local” theorem describing behaviour can be easily generalized to
“global” open intervals:

Theorem

If f ′(x0) > 0 for all x ∈ I = (a, b), then the function f is strictly increas-
ing on the interval I.

If f ′(x0) < 0 for all x ∈ I = (a, b), then the function f is strictly decreas-
ing on the interval I.

Remark

Note that the preceding theorem cannot be generalized on the union of
intervals.
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Example

Find the intervals of the strict monotonicity of the function

y = x2 − 12 ln(x− 1).

We start with computing the domain. Here, we have only one condition,
required by the definition of the logarithmic function, namely x − 1 > 0.
Therefore, the domain is D = (1, ∞).
We proceed with the first derivative,

y′ = 2x− 12 · 1
x− 1

.

Note that Dy′ = D = (1, ∞), even if the function 2x− 12/(x− 1) has larger
domain.
As we need to solve two inequalities, y′ > 0 and y′ < 0, we find the zero
points of y′.

y′ = 2x− 12 · 1
x− 1

=
2x(x− 1)− 12

x− 1
=

2x2 − 2x− 12
x− 1

=
2(x + 2)(x− 3)

x− 1
= 0

This rational expression has three roots, xi = −2, 1, 3, which divide the
domain to the subintervals, where y′ does not change its sign and therefore
it will be possible to decide which inequality is fulfilled on a particular
interval.
As the roots x1 = −2, x2 = 1 do not belong to the domain, we have just
single root x = 3 and we solve the inequalities by the graphical method on
the intervals (1, 3) and (3, ∞) .

The denominator is positive in both cases, so the sign of the numerator
decides on the result:

Intervals of monotonicity.

The function is increasing on the interval (3, ∞) and decreasing on (1, 3).

Intervals of monotonicity.
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Example

Find intervals of monotonicity and all local extremes of the function

y = 2x3 + 3x2 − 12x + 24.

We start with checking the domain, here it is easy, D = R. We proceed
with the first derivative, y′ = 6x2 + 6x− 12.
We solve both tasks at once. As we need to solve the the equation y′ = 0
and the two inequalities, y′ > 0 and y′ < 0, we first find the zero points of
y′, which divide the domain to the subintervals, where y′ does not change
its sign and therefore it is easy to decide which inequality is fulfilled on a
particular interval.
Factoring out the common multiple 6 we rewrite the equation y′ = 0 to the
form

6(x2 + x− 2) = 0
6(x + 2)(x− 1) = 0

So the stationary points are x1 = −2, x2 = 1, we have no rough points and
no endpoints. We easily solve the inequalities by the graphical method:

Intervals of monotonicity.

The function is increasing on the intervals (−∞,−2) and (1, ∞) (however
not on their union!) and decreasing on (−2, 1).
Therefore, there is a local maximum at x = −2 and a local minimum at
x = 1. Note that we don’t even need the second derivative test in this
case.

Graph of the function with marked intervals of monotonicity and local
extremes.
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Exercise

For the given functions:

a) y = x + ln
(

2x2 − x + 1
)

b) y = ln 3√x2 + x c) y =
ln x

1− ln x

find the intervals, where the function is increasing (respectively decreasing). Compute the coordinates of the
local maxima and minima.

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′(x).

3. Find stationary points

4. Determine intervals with
f ′(x) > 0 and f ′(x) < 0.

5. Decide about local extremes.
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Exercise

For the given functions:

a) y = ln
(

1− x
x + 2

)
b) y =

1
x · ln x

c) y = ln
(

x2
)
− x2

find the intervals, where the function is increasing (respectively decreasing). Compute the coordinates of the
local maxima and minima.

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′(x).

3. Find stationary points

4. Determine intervals with
f ′(x) > 0 and f ′(x) < 0.

5. Decide about local extremes.



Worksheets for Mathematics I

145 – Monotonicity and local extremes Řy

Exercise

For the given functions:

a) y =

√
x− 2
3− x

b) y = arctan
(

x +
1
x

)
c) y = ecos(2x)

d) y = 1 + 2 sin3 x

find the intervals, where the function is increasing (respectively decreasing). Compute the coordinates of the
local maxima and minima.

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′(x).

3. Find stationary points

4. Determine intervals with
f ′(x) > 0 and f ′(x) < 0.

5. Decide about local extremes.
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Exercise

For the given functions:

a) y = (1 + 2 sin x)3

b) y =
√
(x− 1) · (x + 1) · (x + 3)

c) y =
x3

x2 + 4x + 3

d) y =
x2 + 4

x2 − 3x + 4

find the intervals, where the function is increasing (respectively decreasing). Compute the coordinates of the
local maxima and minima.

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′(x).

3. Find stationary points

4. Determine intervals with
f ′(x) > 0 and f ′(x) < 0.

5. Decide about local extremes.
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The curvature of the graph can be also described by the tangent line, hence
the derivative.
If the tangent line to the graph of the function y = f (x) at the point
[x0, f (x0)] is lying below the graph of the function at some neigborhood
of x0, we call the function convex at the point (x0). Similarly, if the tangent
line is lying above the graph, it is concave at the point (x0).

A function convex at x1 and concave in x2.

These considerations are not convenient for practical calculations, there-
fore we have the following easy criterion.

Theorem

If f ′′(x0) > 0, then the function f is convex at the point x0.

If f ′′(x0) < 0, then the function f is concave (convex negative) at the
point x0.

Does the theorem extend to open intervals? Yes and very easily:

Theorem

If f ′′(x0) > 0 for all x ∈ (a, b), then the function f is convex on the
interval (a, b).

If f ′′(x0) < 0 for all x ∈ (a, b), then the function f is concave on the
interval (a, b).

The latter theorem

1. geometrically justifies our second derivative test,

2. cannot be generalized on the union of intervals.
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Example

Find the intervals of the convexity for the function

y = x4 − 4x3.

We start with checking the domain, D = R.
We proceed with the first and second derivative,

y′ = 4x3 − 12x2,
y′′ = 12x2 − 24x

Similarly as by the monotonicity, we need to solve two inequalities, only
here with the second derivatives, y′′ > 0 and y′′ < 0.
Again, we first find the zero points of y′′. Factoring out the common mul-
tiple 12 we rewrite the equation y′′ = 0 to the form

12(x2 − 2x) = 0
12x(x− 2) = 0

So the stationary points are x1 = 0, x2 = 2, with no rough points and
no endpoints. Again, We easily solve the inequalities by the graphical
method:

Intervals of convexity and concavity. The symbol ⊕ denotes the interval,
where y′′ > 0, the symbol 	 denotes y′′ < 0.

Notice that the point x = 0 is not an extremum, even though it holds
f ′(0) = 0.

The function y = x4 − 4x3, its intervals of convexity and concavity.
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We describe the points on a graph, where the curvature changes of sign.
In particular, it is a point where the function changes from being concave
to convex, or vice versa.

Definition

We say that the point x0 ∈ D is the inflection point of the function f , if
there exists a neighborhood Nδ(x0) of the point x0 such that

f ′′(x− ε) · f ′′(x + ε) < 0 for all ε ∈ (0, δ).

This is not practical criterion that can be efficiently used by the computa-
tion. We state such a criteria in the following theorems.

Theorem (necessary condition for the existence of an inflection point)

If the function f has an inflection point x0, then

f ′′(x0) = 0.

Theorem (sufficient condition for the existence of an inflection point)

If f ′′(x0) = 0 and f ′′′(x0) 6= 0, then the function f has an inflection point
x0.

The thoerem can be further precised. At the inflection point x0 the lowest
non-zero derivative is of an odd order.

Example

Find all inflection points of the function y = sin(2x).

We compute the second derivative y′′

y′ = cos(2x) · 2,
y′′ = 2(−1) sin(2x) · 2 = (−4) sin(2x)

and set y′′ = 0. We see that the inflection points coincide with the intersec-
tion point of y with the x axis,

xi =
{

0 + k
π

2

∣∣∣ k ∈ Z
}

.

Moreover, if y = sin(2x) is positive, then it is concave, and if y is negative,
it is convex.

The intervals of convexity and concavity of the function y = sin(2x).
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Example

Find all inflection points of the function y = (x2 − 1)5.

We compute the second derivative y′′

y′ = 5(x2 − 1)4 · 2x = 10x(x2 − 1)4,

y′′ = 10(x2 − 1)4 + 10x(x2 − 1)3 · 2x = 10(x2 − 1)3(3x2 − 1)

and set y′′ = 0. It can be decomposed on two equations,

x2 − 1 = 0 or 3x2 − 1 = 0

with the roots

x1,2 = ±1, x3,4 = ±
√

3
3

.

Computing the values of y′′′ at all the critical points would be lengthy, so
we decide on the intervals of convexity and utilize the definition.

The intervals of convexity and concavity of the function y = (x2 − 1)5.

Hence, in all four points x1, . . . , x4, the socnde derivative changes its sign,
they are all inflection points. We got this from the intervals of convexity
(concavity respectively) for free.

The function y = (x2 − 1)5 and its inflection points determined from the
intervals of convexity and concavity.
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Exercise

For the given functions:
a) y = ln(x)−

√
x b) y = ln

(
x2 − 1

)
c) y = ln

(
1√
x

)
− x2

find the point of inflection. Next, determine the intervals, where the function is convex (respectively con-
cave).

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′′(x).

3. Find inflection points

4. Determine intervals with
f ′′(x) > 0 and f ′′(x) < 0.
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Exercise

For the given functions:

a) y = ln(x− 1) +
x2

2 b) y =

(
1− 1

x

)3 c) y =
√

x2 − 1

find the point of inflection. Next, determine the intervals, where the function is convex (respectively con-
cave).

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′′(x).

3. Find inflection points

4. Determine intervals with
f ′′(x) > 0 and f ′′(x) < 0.
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Exercise

For the given functions:

a) y =
ex

x

b) y = x4 · ex

c) y =
√

e1−x

d) y = ex2−1

find the point of inflection. Next, determine the intervals, where the function is convex (respectively con-
cave).

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′′(x).

3. Find inflection points

4. Determine intervals with
f ′′(x) > 0 and f ′′(x) < 0.
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Exercise

For the given functions:

a) y =
2− x2

ex

b) y = (x2 − 2) · ex−1

c) y = sin(x) · ex

d) y = e
2

1−x

find the point of inflection. Next, determine the intervals, where the function is convex (respectively con-
cave).

Hints

Algorithm:

1. Find D( f ).

2. Compute f ′′(x).

3. Find inflection points

4. Determine intervals with
f ′′(x) > 0 and f ′′(x) < 0.
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The formula y = f (x) describes evolution of physical quantity f depend-
ing on another physical quantity x. In physics, some processes are ide-
alised as reversible. In this case, the function describing the value quantity
f is uniquely determined by the value of x. We say that f is one-to-one.
This property can be formulated geometrically as follows:

Definition

The function y = f (x) is called one-to-one if and only if the graph of f
and a horizontal line y = q have at most one intersection point for any
q ∈ R.

The prototypes of one-to one functions are odd powers, e.g. y = x3. On
the other hand, the even powers are not one-to-one.

There is an easy-to-check criterion for any f to be one-to-one.

Theorem

• If the function f is increasing, it is one-to-one.

• If the function f is decreasing, it is one-to-one.
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The function describing the process returning the system into the original
state can be computed by transposing the formula for f . The resulting
function is called the inverse function to f and denoted by f−1.

Theorem

For the one-to-one function y = f (x) with the domain D f and range
I f , there exists unique one-to-one inverse function to f defined on I f =
D f−1 by the formula

f−1(y) = x if and only if f (x) = y.

Moreover, if f−1 is the inverse function to f , then f is the inverse function
to f−1; i.e. the inverse relation is mutual. Therefore, the graphs of the
mutually inverse functions are axially symmetric with respect to the line
(axis) y = x.

The graphs of the mutually symmetric functions are axially symmetric.

Theorem

• If f is increasing then f−1 is increasing.

• If f is decreasing then f−1 is decreasing.

Remark

Note that the notation of the inverse function is ambiguous. In this con-
text, the superscript does not mean “ f to the power of−1”, as the inverse
is made with respect to the composition of functions and not multipli-
cation. Therefore, it holds

f−1 ( f (x)) = x

and not f−1(x) · f (x) = 1.
In another words, the inverse function f−1 is not equal to the reciprocal
function y = 1/ f , i.e.

f−1(x) 6= 1
f (x)

.
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What is the relation between the domain and range of the mutually
inverse functions?
According to the definition and properties of f−1 it holds:

• D f = I f−1 and I f = D f−1 ,

• for every x ∈ D f and y ∈ D f−1 it holds

f−1( f (x)) = x and f ( f−1(y)) = y.

We often need to transpose a formula, which is not one-to-one, e.g. for the
function y = x2. We now describe how this could be done.

The procedure of finding the inverse function y = f−1(x) to the func-
tion y = f (x) can be described as follows:

1. find the domain D f .

2. Decide if the function f is one-to-one. If it is not, find the biggest
interval J, where f is one-to-one, and take J as the domain of f ,
make a restriction of f on J. It is denoted by f |J .

3. Compute the transposed formula for its inverse function.

4. Compute the domain and the range of the inverse function.

Example

Construct an inverse function to the function f : y = x2.

The function f is even, hence not one-to one. We choose J = 〈0, ∞) and
construct f−1 for f |J . As on a larger interval f is not one-to-one, the
resulting f−1 would not be a function.

Constructing an inverse function f−1 to the even function, y = x2.

Notice that there might be a freedom of choice in the decision about the
interval J. In the preceding example, we could choose J = (−∞, 0〉. In
practise, we make the decision based on which points x ∈ D f we want to
map.
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Example

Let be given the function

f (x) : y = 1− ln
(
−1 +

√
x
)

.

Decide if f is one-to-one. Compute the transposed formula for its in-
verse function f−1. Write down the domains D f , D f−1 and ranges I f ,
I f−1 .

We start with the domain of f . From the two conditions involved by the
square root, x ≥ 0, and the logarithm, −1 +

√
x > 0, we get D f = (1, ∞).

Next we check if the function f is one-to-one, based on its monotonicity.
We compute f ′,

y′ = − 1√
x− 1

· 1
2
√

x
.

This expression is negative on D f , as the first fraction is positive for x > 1,
i.e. exactly on D f , and the second fraction is positive even on the bigger
interval 〈0, ∞). Therefore, f is decreasing, thus one-to-one.
We compute the formula for the inverse by switching x ↔ y and express-
ing y:

x = 1− ln (−1 +
√

y)
ln (−1 +

√
y) = 1− x

−1 +
√

y = e1−x

√
y = 1 + e1−x

y =
(

1 + e1−x
)2

The domain D f−1 = R = I f and the range I f−1 = (1, ∞) = D f , as expected.



Worksheets for Mathematics I

159 – Transposing formulae Řy

Example

Let be given the function

f (x) : y = 3− 2
1 + 2x + x2 .

Decide if f is one-to-one. If it is not, find the biggest interval J, where f
is one-to-one and take f |J .
Next, compute the transposed formula for its inverse function f−1.
Write down the domains D f , D f−1 and ranges I f , I f−1 .

We first rewrite the formula as follows:

f : y = 3− 2
(1 + x)2 .

Then, we see the domain D = R \ {−1} = (−∞,−1) ∪ (−1, ∞) more
easily.
In order to show that f is one to one, we show the intervals of monotonic-
ity. The derivative

y′ = (−2)(−2)(1 + x)−3 =
4

(1 + x)3

is positive on J1 = (−1, ∞) and negative on J2 = (−∞,−1). Therefore, f
is not monotone. However, if we choose just one of the two intervals, f
would be monotone, therefore one-to-one. It can be also checked by the
graph.
We choose J1 and restrict f on this interval, i.e. take J1 as the domain of f .
Therefore, f is increasing on J1, hence one-to-one.

We can also compute the inverse. We do it by switching x ↔ y in the
formula for f and expressing y:

x = 3− 2
(1 + y)2

2
(1 + y)2 = 3− x

(1 + y)2 =
2

3− x

1 + y =

√
2

3− x

y =

√
2

3− x
− 1

Just note that we have taken the positive square root in the next-to-last line,

in order that x
f→ y

f−1

→ x. Therefore, we get the range I f−1 = (−1, ∞) = J1,
i.e., the interval we chose as D f .
The domain, D f−1 = (−∞, 3), coincides with the range I f .

If we take J2 as the domain of f , the computation proceeds analogically.
The function f |J2 is decreasing, therefore one-to-one, the formula for f−1

differs only by a minus sign from taking the negative square root on the
next-to-last line,

y = −
√

2
3− x

− 1

and I f−1 = (−∞,−1) = J2.
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Exercise

Decide if the given functions:

a) p(b) :
p
q
=

√
a + 2b
a− 2b

b) f (x) : y =
4x− 1
x + 3

c) y(r) : y + x =
r

4 + r

are one-to-one. Compute the transposed formula for its inverse function f−1. Write down their domains and
ranges.

Hints

Algorithm:

1. Find D( f ).

2. Decide on monotonicity.

3. Switch x ↔ y

4. Compute y.
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Exercise

For the given functions:
a) f (x) : y = ln(1− ex)

b) f (x) : y = 3 + 2 · arccos
x
2

c) f (x) : y = ln(x− 1)− ln(x + 1)

d) S(L) : S =

√
3d(L− d)

8

find their domains and decide if they are one-to-one. Compute the transposed formula for its inverse. Deter-
mine the domain and range of the inverse.

Hints

Algorithm:

1. Find D( f ).

2. Decide on monotonicity.

3. Switch x ↔ y

4. Compute y.
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Exercise

For the given functions:
a) M(R) : M = π(R4 − r4) b) f (x) : y =

1
sin(x)

find the biggest interval, where the function is one-to-one. On this interval compute the transposed formula
for its inverse function f−1. Determine the domain and range of the inverse.

Hints

Algorithm:

1. Find D( f ).

2. Decide on monotonicity.

3. Switch x ↔ y

4. Compute y.
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When two functions approach zero, their ratio might do anything. That is
why we call 0/0 an indeterminate expression. The results depends on the
particular form of the expression hidden behind the zeros in the numerator
and the denominator. We might have

lim
h→0

h2

h
= 0 or lim

h→0

h
h
= 1 or lim

h→0

7h
h

= 7 or lim
h→0

√
h

h
= ∞.

What only matters is whether the numerator goes to zero more quickly than
denominator.
There are eight typical indeterminate expressions:

0
0

,
±∞
±∞

, 0 ·∞, ∞−∞, 00, 0∞, ∞0, 1∞.

The efficient and powerful method to compute the limits of the indeter-
minate expressions is named afted Guillaume François Antoine, Marquis
de l’Hôpital (1661–1704), who published it first in 1696. However the idea
belongs probably to Jacob Bernoulli (1667–1748).

Theorem (L’Hôpital)

Suppose that
lim

x→x0
f (x) = lim

x→x0
g(x) = 0

or
lim

x→x0
f (x) = ±∞ and lim

x→x0
g(x) = ±∞.

Then it holds

lim
x→x0

f ′(x)
g′(x)

= a ⇒ lim
x→x0

f (x)
g(x)

= a

Example

Compute the limits

a) lim
h→0

cos h− 1
h

b) lim
h→0

sin h
h

used for the deduction of the rules for the derivative of sine and cosine
functions.

Both expressions are of the form 0/0, so we can use the l’Hôpital rule.
a) Formally, we should proceed carefully and start by computing the limit
of the ratio of the derivatives:

lim
h→0

(cos h− 1)′

(h)′
= lim

h→0

− sin h
1

= sin(0) = 0.

If this limit exists, then the original limit also exists and they are the same:

lim
h→0

(cos h− 1)′

(h)′
= 0 ⇒ lim

h→0

cos h− 1
h

= 0.

b) In the most cases the limit exists, even if perhaps after multiple deriva-
tives. Therefore, we simplify the formal procedure:

lim
h→0

sin h
h

l’H
= lim

h→0

cos h
1

= cos(0) = 1.
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Example

Compute the limit

lim
x→∞

x + sin x
x

.

The expression is of the form ∞/∞, so we can apply l’Hôpital rule:

lim
x→∞

x + sin x
x

l’H
= lim

x→∞

1 + cos x
1

= 1 + cos(∞).

This limit does not exist, as the cosine function oscillates for x → ∞. How-
ever, from this fact we cannot deduce that the original limit does not exist!
Just, in this rare case, l’Hôpital rule did not give us any answer and we
should proceed with a different method:

lim
x→∞

x + sin x
x

= lim
x→∞

x
x
+

sin x
x

= 1 + lim
x→∞

sin x
x

= 1,

because the last limit is zero, as the limit of the expression of the form n/∞,
with n ∈ [−1, 1].

Example

Show that the growth of the exponential function y = ex is quicker than
the growth of the power function y = xn for any n ∈N.

We compute limit for x → ∞ of their ratio. We start with simple linear
function x1:

lim
x→∞

ex

ax + b
= “

(∞
∞

)
” = lim

x→∞

(ex)′

(ax + b)′
= lim

x→∞

ex

a
=

1
a

lim
x→∞

ex = ∞.

Hence the exponential function in the numerator grows quicker than the
linear function in the denominator.
For a quadratic function we proceed in analogy with the previous calcula-
tion:

lim
x→∞

ex

ax2 + bx + c
= “

(∞
∞

)
” = lim

x→∞

(ex)′

(ax2 + bx + c)′
= lim

x→∞

ex

2ax + b

= “
(∞

∞

)
” = lim

x→∞

ex

2a
=

1
2a

lim
x→∞

ex = ∞.

For any power function y = xn with arbitrary n ∈ N we get the same
result, however only after n derivatives.
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Exercise

Solve:

a) lim
x→0

sin(4x)
x b) lim

x→0

tan2(2x)
2x2

Hints

Limits of the type “0
0” or “±∞

±∞ ”

If lim
x→x0

f ′(x)
g′(x)

= a then lim
x→x0

f (x)
g(x)

= a

Alternatively, utilize the formula

lim
x→x0

sin(x)
x

= 1
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Exercise

Solve:

a) lim
x→∞

1− e2x

x4 b) lim
x→∞

ln2 x
x2 + 1

Hints

Limits of the type “0
0” or “±∞

±∞ ”

If lim
x→x0

f ′(x)
g′(x)

= a then lim
x→x0

f (x)
g(x)

= a
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Exercise

Solve:

a) lim
x→∞

4x2 + 6x + 9
x4 + 2x2 + 1

b) lim
x→∞

3
√

8x3 − 1
(x− 2)2

Hints

Limits of the type “0
0” or “±∞

±∞ ”

If lim
x→x0

f ′(x)
g′(x)

= a then lim
x→x0

f (x)
g(x)

= a

Alternatively, you can factor out the highest
power and discuss

lim
x→∞

axm

bxn =


∞ for m > n
a
b for m = n
0 for m < n
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Exercise

Solve:

a) lim
x→∞

x3 − 7x2 − 1
6x2 + 9x + 15 b) lim

x→∞

√
9x4 + 8x2 + 1

3x− 1

Hints

Limits of the type “0
0” or “±∞

±∞ ”

If lim
x→x0

f ′(x)
g′(x)

= a then lim
x→x0

f (x)
g(x)

= a

Alternatively, you can factor out the highest
power and discuss

lim
x→∞

axm

bxn =


∞ for m > n
a
b for m = n
0 for m < n
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Exercise

Solve:

a) lim
x→∞

4x3 − 1
7x3 + 6x2 + 5x + 4 b) lim

x→∞

√
2x4 − 4x2

3x2 + 2x + 1

Hints

Limits of the type “0
0” or “±∞

±∞ ”

If lim
x→x0

f ′(x)
g′(x)

= a then lim
x→x0

f (x)
g(x)

= a

Alternatively, you can factor out the highest
power and discuss

lim
x→∞

axm

bxn =


∞ for m > n
a
b for m = n
0 for m < n
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Sometimes we can approach the point, where we need to compute the
limit, just from one side, e.g. due to the restrictions in the domain of the
function. That is what we call one-sided limit. We usually speak about
limit from the right, denote it by the small plus in the superscript x → x+0 ,
and limit from the left, denoted analogically by x → x−0 . We also often
speak about left neighborhood N−(x0) = (x0 − δ, x0) and right neighbor-
hood N+(x0) = (x0, x0 + δ) of theo point x0.
Strictly speaking, the limits for x → ∞ and x → −∞, can be also regarded
as one sided limits.

Theorem

The function f has the limit L for x → x0 if and only if

lim
x→x−0

f (x) = L = lim
x→x+0

f (x).

The one sided limits are used mostly for the computing the expressions
a/0:

We say that

lim
x→x0

f (x)
g(x)

, with lim
x→x0

f (x) = a and lim
x→x0

g(x) = 0

is an expression of the form a/0. For its value it holds:

a
0
= ∞

{
a > 0 and g(x) positive
a < 0 and g(x) negative

a
0
= −∞

{
a > 0 and g(x) negative
a < 0 and g(x) positive

Example

Compute the limit

lim
x→0+

√
x

x2 .

As D = (0, ∞), we can only compute the limit at x = 0 from the right only.
The expression is of the form 0/0 and we can use l’Hôpital rule, as usual:

lim
x→0+

√
x

x2
l’H
= lim

x→0+

1
2 x−

1
2

2x
= lim

x→0+

1
4x
√

x
= “ 1

+0” = ∞.

Example

Compute the limit

lim
x→1

1
x2 − 1

.

The limit is of the form 1/0 and the denominator changes sign at x = 1.
Therefore, we compute the one-sided limits:

lim
x→1−

1
x2 − 1

=
1
0
= −∞,

as the denominator is negative on a left neighborhood, e.g. N−(1) = (0, 1),

lim
x→1+

1
x2 − 1

=
1
0
= +∞,

as the denominator is positive on a right neighborhood, e.g. N+(1) =
(1, 8).
As the one sided limits have different values, the standard limit,
limx→1

1
x2−1 does not exist.
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The indeterminate expressions not covered by l’Hôpital rule may be rear-
ranged to the form ±∞

±∞ or 0
0 .

We start with the expressions of the form 0 ·∞. For them it holds:

0 ·∞ = 0 · 1
1
∞

=
0
0

or 0 ·∞ =
1
1
0

·∞ =
∞
∞

.

Which one should we use? Generally speaking the one, which provides
nicer expression for the derivative.

Example

Compute lim
x→0+

x · ln x.

The expressions of the form 0 · (−∞) = (−1) · 0 ·∞. We show the both
ways of tranformation:

lim
x→0+

x · ln x = lim
x→0+

1
1
x
· ln x = lim

x→0+

ln x
1
x

l’H
= lim

x→0+

1
x

(−1)x−2 = lim
x→0+

−x = 0

The other possibility

lim
x→0+

x · ln x = lim
x→0+

x · 1
1

ln x
= lim

x→0+

x
1

ln x

l’H
= lim

x→0+

1
(−1)(ln x)−2 1

x
= lim

x→0+
(−x) · ln2 x

leads to nowhere.

We turn to the expression ∞−∞. The infinities most often arise when we
divide by the variable x anf let x go to zero. The expression 0/0 can be
handled by l’Hôpital rule. For the expressions with non-zero numerator,
i.e. a/0 we use the procedure prom the previus page, a/0 = ±∞.
That is why the expression ∞−∞ may be usually expanded with a com-
mon denominator, which transforms it into either 0/0 or a/0.

Example

Compute lim
x→1

(
1

ln x
− 2

x− 1

)
.

First we rewrite the bracket using the common denominator (x− 1) ln x:

lim
x→1

(
1

ln x
− 1

x− 1

)
= lim

x→1

(
x− 1− ln x
(x− 1) ln x

)
,

which is of the form 0/0, and next we can use L’Hôpital rule

lim
x→1

(
x− 1− ln x
(x− 1) ln x

)
l’H
= lim

x→1

(
1− 1

x

ln x + (x− 1) 1
x

)
=

(
0
0

)
l’H
= lim

x→1

(
− 1

x2

1
x + 1

x2

)
= lim

x→1

1
x + 1

=
1
2
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Exercise

Compute the following limits:

a) lim
x→∞

(√
x2 + 2x− 2x

)
b) lim

x→0
x · cot(x)

c) lim
x→∞

(√
x2 + x− 1− x

)
d) lim

x→−∞
x · ex

Hints

Limits of the type “∞−∞” and “0 ·∞” may be
rearranged to the type “0

0” or “±∞
±∞ ”.

If lim
x→x0

f ′(x)
g′(x)

= a then lim
x→x0

f (x)
g(x)

= a.
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The asymptotes are special tangent lines that meet the graph at infinity.
This is why we need to use limits to decide about asymptotes. We have
three types of asymptotes:

Definition

Vertical asymptote aV : x = x0:

lim
x→x0±

f (x) = ±∞

Horizontal asymptote AH : y = a:

lim
x→∞

f (x) = a

Oblique asymptote aO : y = k · x + q:

k = lim
x→∞

f (x)
x

q = lim
x→∞

f (x)− k · x

Remark

a) We note that when f is elementary continuous function, the only pos-
sibility of a vertical asymptote arises at the border points of the domain
intervals D = (a, b). Therefore we require only the existence of one
one-sided limit for the existence of the vertical asymptote.

b) In some cases, there might exist a different oblique asymptote for
x → −∞.

The three types of asymptotes.
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Example

Write down the equations of all asymptotes to the graph of the function

f : y =
x2 − 1

x
.

We first determine the domain of f . Due to the x in the denominator, we
have D = R \ {0} = (−∞, 0) ∪ (0, ∞).

Therefore, the existence of the only possible vertical asymptote aV : x = 0
will be determined by the limit

lim
x→0

x2 − 1
x

= “
(
−1
0

)
” ±∞

As the one-sided limit from the left is ∞ and from the right−∞, the asymp-
tote indeed exists.

Next, we decide if there is horizontal or oblique asymptote. As

lim
x→∞

x2 − 1
x

l’H
= lim

x→∞

2x
1

= ∞

there is no horizontal asymptote.

Finally, we compute the formula for the oblique asymptote:

k = lim
x→∞

x2−1
x
x

= lim
x→∞

x2 − 1
x2

l’H
= lim

x→∞

2x
2x

= 1

q = lim
x→∞

x2 − 1
x
− 1 · x = “(∞−∞)” = lim

x→∞

x2 − 1− x2

x
= lim

x→∞

−1
x

= 0

The same holds also for x → −∞ and we have unique oblique asymptote
y = x.

The situation is nicely visible form the graph:

The function f : y =
x2 − 1

x
and its asymptotes.
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Example

Write down the equations of all asymptotes to the graph of the function

f : y = arctan
(

1
x

)
.

We first determine the domain of f . Due to the 1/x in the argument we
have D = R \ {0} = (−∞, 0) ∪ (0, ∞).

Therefore, the existence of the only possible vertical asymptote aV : x = 0
will be determined by the limit

lim
x→0

arctan
(

1
x

)
= “arctan

(
1
0

)
= arctan(±∞)”

We treat the cases separately. First, we take x > 0 and substitute y = 1/x.
We get

lim
x→0+

arctan
(

1
x

)
= lim

y→∞
arctan (y) =

π

2
,

as the function arctan is increasing and I = (−π
2 , π

2 ). Similarly,

lim
x→0−

arctan
(

1
x

)
= lim

y→−∞
arctan (y) = −π

2
.

Hence, the one-sided limits are different and finite. Therefore, the vertical
asymptote does not exist.

Next, we decide if there is horizontal or oblique asymptote. As

lim
x→∞

arctan
(

1
x

)
= arctan(0) = 0,

we have the horizontal asymptote y = 0 and there is no oblique asymptote.

Exercise

Draw the asymptotes into the graph of the function f : y = arctan
(

1
x

)
.

Graph of the function f : y = arctan
(

1
x

)
.
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Exercise

Write down the equations of all asymptotes to the graph of the functions:

a) y =
x− 4

2x + 6

b) y =
1

x2 + x− 2

c) y =
x + 1
x2 − 4

d) y =
x2 − 2x + 2

3x− 4

Hints

Vertical asymptote x = x0:
lim

x→x±0
f (x) = ±∞

Horizontal asymptote y = a:
lim
x→∞

f (x) = a

Oblique asymptote y = k · x + q:

k = lim
x→∞

f (x)
x

q = lim
x→∞

f (x)− k · x
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Exercise

Write down the equations of all asymptotes to the graph of the functions:

a) y =
x2

1− x

b) y = 3− 2x +
1
x2

c) y =
1− x2

x2 + 3x + 4

d) y =
x3 + 3x2 + 1

x2 + 2

Hints

Vertical asymptote x = x0:
lim

x→x±0
f (x) = ±∞

Horizontal asymptote y = a:
lim
x→∞

f (x) = a

Oblique asymptote y = k · x + q:

k = lim
x→∞

f (x)
x

q = lim
x→∞

f (x)− k · x
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Exercise

Write down the equations of all asymptotes to the graph of the functions:
a) y = x · e−2x

b) y = x2 · e−x

c) y = ln
x + 1
x− 1

d) y =
sin x

x

Hints

Vertical asymptote x = x0:
lim

x→x±0
f (x) = ±∞

Horizontal asymptote y = a:
lim
x→∞

f (x) = a

Oblique asymptote y = k · x + q:

k = lim
x→∞

f (x)
x

q = lim
x→∞

f (x)− k · x
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Exercise

Write down the equations of all asymptotes to the graph of the functions:

a) y =
cos x

x

b) y =
x
2
− cos x

c) y = x + arctan
x
2

d) y = arctan
x + 1

x

Hints

Vertical asymptote x = x0:
lim

x→x±0
f (x) = ±∞

Horizontal asymptote y = a:
lim
x→∞

f (x) = a

Oblique asymptote y = k · x + q:

k = lim
x→∞

f (x)
x

q = lim
x→∞

f (x)− k · x
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